GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Parental-to-embryo switch of chromosome organization in early embryogenesis 期刊论文
NATURE, 2020: 142-+
作者:  Kim, Eugene;  Kerssemakers, Jacob;  Shaltiel, Indra A.;  Haering, Christian H.;  Dekker, Cees
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03

Single-cell allelic HiC analysis, combined with allelic gene expression and chromatin states, reveals parent-of-origin-specific dynamics of chromosome organization and gene expression during mouse preimplantation development.


Paternal and maternal epigenomes undergo marked changes after fertilization(1). Recent epigenomic studies have revealed the unusual chromatin landscapes that are present in oocytes, sperm and early preimplantation embryos, including atypical patterns of histone modifications(2-4) and differences in chromosome organization and accessibility, both in gametes(5-8) and after fertilization(5,8-10). However, these studies have led to very different conclusions: the global absence of local topological-associated domains (TADs) in gametes and their appearance in the embryo(8,9) versus the pre-existence of TADs and loops in the zygote(5,11). The questions of whether parental structures can be inherited in the newly formed embryo and how these structures might relate to allele-specific gene regulation remain open. Here we map genomic interactions for each parental genome (including the X chromosome), using an optimized single-cell high-throughput chromosome conformation capture (HiC) protocol(12,13), during preimplantation in the mouse. We integrate chromosome organization with allelic expression states and chromatin marks, and reveal that higher-order chromatin structure after fertilization coincides with an allele-specific enrichment of methylation of histone H3 at lysine 27. These early parental-specific domains correlate with gene repression and participate in parentally biased gene expression-including in recently described, transiently imprinted loci(14). We also find TADs that arise in a non-parental-specific manner during a second wave of genome assembly. These de novo domains are associated with active chromatin. Finally, we obtain insights into the relationship between TADs and gene expression by investigating structural changes to the paternal X chromosome before and during X chromosome inactivation in preimplantation female embryos(15). We find that TADs are lost as genes become silenced on the paternal X chromosome but linger in regions that escape X chromosome inactivation. These findings demonstrate the complex dynamics of three-dimensional genome organization and gene expression during early development.


  
Constructing protein polyhedra via orthogonal chemical interactions 期刊论文
NATURE, 2020, 578 (7793) : 172-+
作者:  Mooley, K. P.;  Deller, A. T.;  Gottlieb, O.;  Nakar, E.;  Hallinan, G.;  Bourke, S.;  Frail, D. A.;  Horesh, A.;  Corsi, A.;  Hotokezaka, K.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Many proteins exist naturally as symmetrical homooligomers or homopolymers(1). The emergent structural and functional properties of such protein assemblies have inspired extensive efforts in biomolecular design(2-5). As synthesized by ribosomes, proteins are inherently asymmetric. Thus, they must acquire multiple surface patches that selectively associate to generate the different symmetry elements needed to form higher-order architectures(1,6)-a daunting task for protein design. Here we address this problem using an inorganic chemical approach, whereby multiple modes of protein-protein interactions and symmetry are simultaneously achieved by selective, '  one-pot'  coordination of soft and hard metal ions. We show that a monomeric protein (protomer) appropriately modified with biologically inspired hydroxamate groups and zinc-binding motifs assembles through concurrent Fe3+ and Zn2+ coordination into discrete dodecameric and hexameric cages. Our cages closely resemble natural polyhedral protein architectures(7,8) and are, to our knowledge, unique among designed systems(9-13) in that they possess tightly packed shells devoid of large apertures. At the same time, they can assemble and disassemble in response to diverse stimuli, owing to their heterobimetallic construction on minimal interprotein-bonding footprints. With stoichiometries ranging from [2 Fe:9 Zn:6 protomers] to [8 Fe:21 Zn:12 protomers], these protein cages represent some of the compositionally most complex protein assemblies-or inorganic coordination complexes-obtained by design.


An inorganic chemical approach to biomolecular design is used to generate '  cages'  that can simultaneously promote symmetry and multiple modes of protein interactions.


  
The mechanistic basis for higher-order interactions and non-additivity in competitive communities 期刊论文
ECOLOGY LETTERS, 2019, 22 (3) : 423-436
作者:  Letten, Andrew D.;  Stouffer, Daniel B.
收藏  |  浏览/下载:6/0  |  提交时间:2019/04/09
Coexistence  higher-order interactions  Lotka-Volterra  mechanistic models  non-additivity  resource competition