GSTDTAP

浏览/检索结果: 共23条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Landerer, Felix W.;  Flechtner, Frank M.;  Save, Himanshu;  Webb, Frank H.;  Bandikova, Tamara;  Bertiger, William, I;  Bettadpur, Srinivas, V;  Byun, Sung Hun;  Dahle, Christoph;  Dobslaw, Henryk;  Fahnestock, Eugene;  Harvey, Nate;  Kang, Zhigui;  Kruizinga, Gerhard L. H.;  Loomis, Bryant D.;  McCullough, Christopher;  Murboeck, Michael;  Nagel, Peter;  Paik, Meegyeong;  Pie, Nadege;  Poole, Steve;  Strekalov, Dmitry;  Tamisiea, Mark E.;  Wang, Furun;  Watkins, Michael M.;  Wen, Hui-Ying;  Wiese, David N.;  Yuan, Dah-Ning
收藏  |  浏览/下载:35/0  |  提交时间:2020/05/25
GRACE-FO  satellite gravimetry  mass change  hydrogeodesy  ice melt  mass transport  
Ice front blocking of ocean heat transport to an Antarctic ice shelf 期刊论文
NATURE, 2020, 578 (7796) : 568-+
作者:  Alexandrov, Ludmil B.;  Kim, Jaegil;  Haradhvala, Nicholas J.;  Huang, Mi Ni;  Ng, Alvin Wei Tian;  Wu, Yang;  Boot, Arnoud;  Covington, Kyle R.;  Gordenin, Dmitry A.;  Bergstrom, Erik N.;  Islam, S. M. Ashiqul;  Lopez-Bigas, Nuria;  Klimczak, Leszek J.;  McPherson, John R.;  Morganella, Sandro;  Sabarinathan, Radhakrishnan;  Wheeler, David A.;  Mustonen, Ville;  Getz, Gad;  Rozen, Steven G.;  Stratton, Michael R.
收藏  |  浏览/下载:44/0  |  提交时间:2020/05/13

The front of the Getz Ice Shelf in West Antarctica creates an abrupt topographic step that deflects ocean currents, suppressing 70% of the heat delivery to the ice sheet.


Mass loss from the Antarctic Ice Sheet to the ocean has increased in recent decades, largely because the thinning of its floating ice shelves has allowed the outflow of grounded ice to accelerate(1,2). Enhanced basal melting of the ice shelves is thought to be the ultimate driver of change(2,3), motivating a recent focus on the processes that control ocean heat transport onto and across the seabed of the Antarctic continental shelf towards the ice(4-6). However, the shoreward heat flux typically far exceeds that required to match observed melt rates(2,7,8), suggesting that other critical controls exist. Here we show that the depth-independent (barotropic) component of the heat flow towards an ice shelf is blocked by the marked step shape of the ice front, and that only the depth-varying (baroclinic) component, which is typically much smaller, can enter the sub-ice cavity. Our results arise from direct observations of the Getz Ice Shelf system and laboratory experiments on a rotating platform. A similar blocking of the barotropic component may occur in other areas with comparable ice-bathymetry configurations, which may explain why changes in the density structure of the water column have been found to be a better indicator of basal melt rate variability than the heat transported onto the continental shelf(9). Representing the step topography of the ice front accurately in models is thus important for simulating ocean heat fluxes and induced melt rates.


  
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice 期刊论文
NATURE, 2020, 577 (7789) : 221-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:33/0  |  提交时间:2020/05/13

Climate change in the Arctic is occurring rapidly, and projections suggest the complete loss of summer sea ice by the middle of this century(1). The sensitivity of permanently frozen ground (permafrost) in the Northern Hemisphere to warming is less clear, and its long-term trends are harder to monitor than those of sea ice. Here we use palaeoclimate data to show that Siberian permafrost is robust to warming when Arctic sea ice is present, but vulnerable when it is absent. Uranium-lead chronology of carbonate deposits (speleothems) in a Siberian cave located at the southern edge of continuous permafrost reveals periods in which the overlying ground was not permanently frozen. The speleothem record starts 1.5 million years ago (Ma), a time when greater equator-to-pole heat transport led to a warmer Northern Hemisphere(2). The growth of the speleothems indicates that permafrost at the cave site was absent at that time, becoming more frequent from about 1.35 Ma, as the Northern Hemisphere cooled, and permanent after about 0.4 Ma. This history mirrors that of year-round sea ice in the Arctic Ocean, which was largely absent before about 0.4 Ma (ref.(3)), but continuously present since that date. The robustness of permafrost when sea ice is present, as well as the increased permafrost vulnerability when sea ice is absent, can be explained by changes in both heat and moisture transport. Reduced sea ice may contribute to warming of Arctic air(4-6), which can lead to warming far inland(7). Open Arctic waters also increase the source of moisture and increase autumn snowfall over Siberia, insulating the ground from low winter temperatures(8-10). These processes explain the relationship between an ice-free Arctic and permafrost thawing before 0.4 Ma. If these processes continue during modern climate change, future loss of summer Arctic sea ice will accelerate the thawing of Siberian permafrost.


  
Differential Heating Drives Downslope Flows that Accelerate Mixed-Layer Warming in Ice-Covered Waters 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (23) : 13872-13882
作者:  Ulloa, Hugo N.;  Winters, Kraig B.;  Wueest, Alfred;  Bouffard, Damien
收藏  |  浏览/下载:24/0  |  提交时间:2020/02/17
ice-covered lakes  radiatively driven convection  lake topography  lateral transport  mixed-layer evolution  circulation and heat fluxes in polar aquatic systems  
Voyager 2 constraints on plasmoid-based transport at Uranus 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019
作者:  DiBraccio, Gina A.;  Gershman, Daniel J.
收藏  |  浏览/下载:21/0  |  提交时间:2019/11/27
Uranus  plasmoid  magnetic reconnection  magnetosphere  plasma transport  Ice Giant  
Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport 期刊论文
CLIMATE DYNAMICS, 2019, 53: 4989-5017
作者:  Docquier, David;  Grist, Jeremy P.;  Roberts, Malcolm J.;  Roberts, Christopher D.;  Semmler, Tido;  Ponsoni, Leandro;  Massonnet, Francois;  Sidorenko, Dmitry;  Sein, Dmitry V.;  Iovino, Doroteaciro;  Bellucci, Alessio;  Fichefet, Thierry
收藏  |  浏览/下载:14/0  |  提交时间:2019/11/27
Model resolution  Arctic sea ice  Ocean heat transport  
Differences between Arctic Interannual and Decadal Variability across Climate States 期刊论文
JOURNAL OF CLIMATE, 2019, 32 (18) : 6035-6050
作者:  Reusen, Jesse;  van der Linden, Eveline;  Bintanja, Richard
收藏  |  浏览/下载:13/0  |  提交时间:2019/11/27
Sea ice  Energy transport  Decadal variability  Interannual variability  
A missing component of Arctic warming: black carbon from gas flaring 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (9)
作者:  Cho, Mee-Hyun;  Park, Rokjin J.;  Yoon, Jinho;  Choi, Yonghan;  Jeong, Jaein I.;  Labzovskii, Lev;  Fu, Joshua S.;  Huang, Kan;  Jeong, Su-Jong;  Kim, Baek-Min
收藏  |  浏览/下载:16/0  |  提交时间:2019/11/27
black carbon  gas flaring  sea-ice melting  Arctic warming  moisture transport  
Wet Scavenging in WRF-Chem Simulations of Parameterized Convection for a Severe Storm During the DC3 Field Campaign 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (13) : 7413-7428
作者:  Li, Y.;  Pickering, K. E.;  Barth, M. C.;  Bela, M. M.;  Cummings, K. A.;  Allen, D. J.
收藏  |  浏览/下载:39/0  |  提交时间:2019/11/27
wet scavenging  deep convective transport  WRF-Chem  trace gases  ice retention factor  cloud parameterization  
Impact of atmospheric heat and moisture transport on the Arctic warming 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019, 39 (8) : 3582-3592
作者:  Alekseev, Genrikh;  Kuzmina, Svetlana;  Bobylev, Leonid;  Urazgildeeva, Alexandra;  Gnatiuk, Natalia
收藏  |  浏览/下载:10/0  |  提交时间:2019/11/26
air temperature  Arctic warming  heat and moisture transport  sea ice