GSTDTAP

浏览/检索结果: 共377条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
美国发布《推进美国温室气体综合测量、监测和信息系统的国家战略》 快报文章
气候变化快报,2023年第24期
作者:  廖琴 曾静静
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:477/0  |  提交时间:2023/12/20
Greenhouse Gas Measurement, Monitoring, and Information System  National Strategy  U.S.  
三维断层模型提高地震预警精度 快报文章
地球科学快报,2021年第24期
作者:  王晓晨
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:757/0  |  提交时间:2021/12/24
3D Finite‐Fault Information  Earthquake Early Warning  
全球三分之一的人尚未得到气候灾害预警系统的覆盖 快报文章
气候变化快报,2020年第21期
作者:  董利苹
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:405/0  |  提交时间:2020/11/05
State of Climate Services  Risk Information  Early Warning Systems  
Insights into the assembly and activation of the microtubule nucleator gamma-TuRC 期刊论文
NATURE, 2020, 578 (7795) : 467-+
作者:  Cyranoski, David
收藏  |  浏览/下载:34/0  |  提交时间:2020/07/03

Microtubules are dynamic polymers of alpha- and beta-tubulin and have crucial roles in cell signalling, cell migration, intracellular transport and chromosome segregation(1). They assemble de novo from alpha beta-tubulin dimers in an essential process termed microtubule nucleation. Complexes that contain the protein gamma-tubulin serve as structural templates for the microtubule nucleation reaction(2). In vertebrates, microtubules are nucleated by the 2.2-megadalton gamma-tubulin ring complex (gamma-TuRC), which comprises gamma-tubulin, five related gamma-tubulin complex proteins (GCP2-GCP6) and additional factors(3). GCP6 is unique among the GCP proteins because it carries an extended insertion domain of unknown function. Our understanding of microtubule formation in cells and tissues is limited by a lack of high-resolution structural information on the gamma-TuRC. Here we present the cryo-electron microscopy structure of gamma-TuRC from Xenopus laevis at 4.8 angstrom global resolution, and identify a 14-spoked arrangement of GCP proteins and gamma-tubulins in a partially flexible open left-handed spiral with a uniform sequence of GCP variants. By forming specific interactions with other GCP proteins, the GCP6-specific insertion domain acts as a scaffold for the assembly of the gamma-TuRC. Unexpectedly, we identify actin as a bona fide structural component of the gamma-TuRC with functional relevance in microtubule nucleation. The spiral geometry of gamma-TuRC is suboptimal for microtubule nucleation and a controlled conformational rearrangement of the gamma-TuRC is required for its activation. Collectively, our cryo-electron microscopy reconstructions provide detailed insights into the molecular organization, assembly and activation mechanism of vertebrate gamma-TuRC, and will serve as a framework for the mechanistic understanding of fundamental biological processes associated with microtubule nucleation, such as meiotic and mitotic spindle formation and centriole biogenesis(4).


The cryo-EM structure of the gamma-tubulin ring complex (gamma-TuRC) from Xenopus laevis provides insights into the molecular organization of the complex, and shows that actin is a structural component that is functionally relevant to microtubule nucleation.


  
Resource management and joint-planning in fragmented societies 期刊论文
ECOLOGICAL ECONOMICS, 2020, 171
作者:  Schultz, Bill
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/02
Diversity  Identity  Harvest planning  Game theory  Information  Resource management  Group decision-making  Uncertainty  
On the Reliability of Variable-Rate Pumping Test Results: Sensitivity to Information Content of the Recorded Data 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (5)
作者:  Naderi, Mostafa;  Gupta, Hoshin, V
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/02
aquifer parameters  variable-rate pumping tests  time domain numerical integration  Duhamel'  s principle  confined  unconfined and leaky aquifers  information loss  
Hidden neural states underlie canary song syntax 期刊论文
NATURE, 2020
作者:  Bao, Han;  Duan, Junlei;  Jin, Shenchao;  Lu, Xingda;  Li, Pengxiong;  Qu, Weizhi;  Wang, Mingfeng;  Novikova, Irina;  Mikhailov, Eugeniy E.;  Zhao, Kai-Feng;  Molmer, Klaus;  Shen, Heng;  Xiao, Yanhong
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

Neurons in the canary premotor cortex homologue encode past song phrases and transitions, carrying information relevant to future choice of phrases as '  hidden states'  during song.


Coordinated skills such as speech or dance involve sequences of actions that follow syntactic rules in which transitions between elements depend on the identities and order of past actions. Canary songs consist of repeated syllables called phrases, and the ordering of these phrases follows long-range rules(1)in which the choice of what to sing depends on the song structure many seconds prior. The neural substrates that support these long-range correlations are unknown. Here, using miniature head-mounted microscopes and cell-type-specific genetic tools, we observed neural activity in the premotor nucleus HVC(2-4)as canaries explored various phrase sequences in their repertoire. We identified neurons that encode past transitions, extending over four phrases and spanning up to four seconds and forty syllables. These neurons preferentially encode past actions rather than future actions, can reflect more than one song history, and are active mostly during the rare phrases that involve history-dependent transitions in song. These findings demonstrate that the dynamics of HVC include '  hidden states'  that are not reflected in ongoing behaviour but rather carry information about prior actions. These states provide a possible substrate for the control of syntax transitions governed by long-range rules.


  
Collective decision-making by rational agents with differing preferences 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (19) : 10388-10396
作者:  Mann, Richard P.
收藏  |  浏览/下载:30/0  |  提交时间:2020/05/13
agent-based model  collective behavior  rational choice  social information  utility  
Mapping the twist-angle disorder and Landau levels in magic-angle graphene 期刊论文
NATURE, 2020, 581 (7806) : 47-+
作者:  Luck, Katja;  39;Amata, Cassandra
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

The recently discovered flat electronic bands and strongly correlated and superconducting phases in magic-angle twisted bilayer graphene (MATBG)(1,2) crucially depend on the interlayer twist angle, theta. Although control of the global theta with a precision of about 0.1 degrees has been demonstrated(1-7), little information is available on the distribution of the local twist angles. Here we use a nanoscale on-tip scanning superconducting quantum interference device (SQUID-on-tip)(8) to obtain tomographic images of the Landau levels in the quantum Hall state(9) and to map the local theta variations in hexagonal boron nitride (hBN)-encapsulated MATBG devices with relative precision better than 0.002 degrees and a spatial resolution of a few moire periods. We find a correlation between the degree of theta disorder and the quality of the MATBG transport characteristics and show that even state-of-the-art devices-which exhibit correlated states, Landau fans and superconductivity-display considerable local variation in theta of up to 0.1 degrees, exhibiting substantial gradients and networks of jumps, and may contain areas with no local MATBG behaviour. We observe that the correlated states in MATBG are particularly fragile with respect to the twist-angle disorder. We also show that the gradients of theta generate large gate-tunable in-plane electric fields, unscreened even in the metallic regions, which profoundly alter the quantum Hall state by forming edge channels in the bulk of the sample and may affect the phase diagram of the correlated and superconducting states. We thus establish the importance of theta disorder as an unconventional type of disorder enabling the use of twist-angle gradients for bandstructure engineering, for realization of correlated phenomena and for gate-tunable built-in planar electric fields for device applications.


SQUID-on-tip tomographic imaging of Landau levels in magic-angle graphene provides nanoscale maps of local twist-angle disorder and shows that its properties are fundamentally different from common types of disorder.


  
Retinal innervation tunes circuits that drive nonphotic entrainment to food 期刊论文
NATURE, 2020, 581 (7807) : 194-+
作者:  Roque, Jose B.;  Kuroda, Yusuke;  Gottemann, Lucas T.;  Sarpong, Richmond
收藏  |  浏览/下载:50/0  |  提交时间:2020/07/03

Daily changes in light and food availability are major time cues that influence circadian timing(1). However, little is known about the circuits that integrate these time cues to drive a coherent circadian output(1-3). Here we investigate whether retinal inputs modulate entrainment to nonphotic cues such as time-restricted feeding. Photic information is relayed to the suprachiasmatic nucleus (SCN)-the central circadian pacemaker-and the intergeniculate leaflet (IGL) through intrinsically photosensitive retinal ganglion cells (ipRGCs)(4). We show that adult mice that lack ipRGCs from the early postnatal stages have impaired entrainment to time-restricted feeding, whereas ablation of ipRGCs at later stages had no effect. Innervation of ipRGCs at early postnatal stages influences IGL neurons that express neuropeptide Y (NPY) (hereafter, IGL(NPY) neurons), guiding the assembly of a functional IGL(NPY)-SCN circuit. Moreover, silencing IGL(NPY) neurons in adult mice mimicked the deficits that were induced by ablation of ipRGCs in the early postnatal stages, and acute inhibition of IGL(NPY) terminals in the SCN decreased food-anticipatory activity. Thus, innervation of ipRGCs in the early postnatal period tunes the IGL(NPY)-SCN circuit to allow entrainment to time-restricted feeding.