GSTDTAP

浏览/检索结果: 共43条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
美德研究揭示倒数第二个间冰期早期赤道大西洋变暖反馈机制 快报文章
气候变化快报,2022年第18期
作者:  秦冰雪
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:713/0  |  提交时间:2022/09/20
Methane Hydrate Destabilization  Oceanic Intermediate Water Warming  Gulf of Guinea  
Changes in Deep-Sea Oxygenation in the Northeast Pacific Ocean During 32-10 ka 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (11)
作者:  Saravanan, Ponnusamy;  Gupta, Anil K.;  Zheng, Hongbo;  Rai, Santosh K.;  Panigrahi, Mruganka K.
收藏  |  浏览/下载:24/0  |  提交时间:2020/05/25
Cascadia margin  upwelling  Bolling-angstrom llerod  oxygen minimum zone  intermediate water  
Molecular tuning of CO2-to-ethylene conversion 期刊论文
NATURE, 2020, 577 (7791) : 509-+
作者:  Li, Fengwang;  39;Brien, Colin P.
收藏  |  浏览/下载:37/0  |  提交时间:2020/07/03

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources(1). However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge(2). Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity(3-5), and this has recently been explored for the reaction on copper by controlling morphology(6), grain boundaries(7), facets(8), oxidation state(9) and dopants(10). Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far(9)), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums(11), adsorbed on copper. We find that the adhered molecules improve the stabilization of an '  atop-bound'  CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.


Electrocatalytic reduction of CO2 over copper can be made highly selective by '  tuning'  the copper surface with adsorbed organic molecules to stabilize intermediates for carbon-based fuels such as ethylene


  
A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1 期刊论文
NATURE, 2020, 577 (7788) : 109-+
作者:  Tao, Panfeng;  Sun, Jinqiao;  Wu, Zheming;  Wang, Shihao;  Wang, Jun;  Li, Wanjin;  Pan, Heling;  Bai, Renkui;  Zhang, Jiahui;  Wang, Ying;  Lee, Pui Y.;  Ying, Wenjing;  Zhou, Qinhua;  Hou, Jia;  Wang, Wenjie;  Sun, Bijun;  Yang, Mi;  Liu, Danru;  Fang, Ran;  Han, Huan;  Yang, Zhaohui;  Huang, Xin;  Li, Haibo;  Deuitch, Natalie;  Zhang, Yuan;  Dissanayake, Dilan;  Haude, Katrina;  McWalter, Kirsty;  Roadhouse, Chelsea;  MacKenzie, Jennifer J.;  Laxer, Ronald M.;  Aksentijevich, Ivona;  Yu, Xiaomin;  Wang, Xiaochuan;  Yuan, Junying;  Zhou, Qing
收藏  |  浏览/下载:72/0  |  提交时间:2020/07/03

Activation of RIPK1 controls TNF-mediated apoptosis, necroptosis and inflammatory pathways(1). Cleavage of human and mouse RIPK1 after residues D324 and D325, respectively, by caspase-8 separates the RIPK1 kinase domain from the intermediate and death domains. The D325A mutation in mouse RIPK1 leads to embryonic lethality during mouse development(2,3). However, the functional importance of blocking caspase-8-mediated cleavage of RIPK1 on RIPK1 activation in humans is unknown. Here we identify two families with variants in RIPK1 (D324V and D324H) that lead to distinct symptoms of recurrent fevers and lymphadenopathy in an autosomaldominant manner. Impaired cleavage of RIPK1 D324 variants by caspase-8 sensitized patients'  peripheral blood mononuclear cells to RIPK1 activation, apoptosis and necroptosis induced by TNF. The patients showed strong RIPK1-dependent activation of inflammatory signalling pathways and overproduction of inflammatory cytokines and chemokines compared with unaffected controls. Furthermore, we show that expression of the RIPK1 mutants D325V or D325H in mouse embryonic fibroblasts confers not only increased sensitivity to RIPK1 activation-mediated apoptosis and necroptosis, but also induction of pro-inflammatory cytokines such as IL-6 and TNF. By contrast, patient-derived fibroblasts showed reduced expression of RIPK1 and downregulated production of reactive oxygen species, resulting in resistance to necroptosis and ferroptosis. Together, these data suggest that human non-cleavable RIPK1 variants promote activation of RIPK1, and lead to an autoinflammatory disease characterized by hypersensitivity to apoptosis and necroptosis and increased inflammatory response in peripheral blood mononuclear cells, as well as a compensatory mechanism to protect against several pro-death stimuli in fibroblasts.


  
FACT caught in the act of manipulating the nucleosome 期刊论文
NATURE, 2020, 577 (7790) : 426-+
作者:  Shen, Helen
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

The organization of genomic DNA into nucleosomes profoundly affects all DNA-related processes in eukaryotes. The histone chaperone known as '  facilitates chromatin transcription'  (FACT(1)) (consisting of subunits SPT16 and SSRP1) promotes both disassembly and reassembly of nucleosomes during gene transcription, DNA replication and DNA repair(2). However, the mechanism by which FACT causes these opposing outcomes is unknown. Here we report two cryo-electron-microscopic structures of human FACT in complex with partially assembled subnucleosomes, with supporting biochemical and hydrogen-deuterium exchange data. We find that FACT is engaged in extensive interactions with nucleosomal DNA and all histone variants. The large DNA-binding surface on FACT appears to be protected by the carboxy-terminal domains of both of its subunits, and this inhibition is released by interaction with H2A-H2B, allowing FACT-H2A-H2B to dock onto a complex containing DNA and histones H3 and H4 (ref. (3)). SPT16 binds nucleosomal DNA and tethers H2A-H2B through its carboxy-terminal domain by acting as a placeholder for DNA. SSRP1 also contributes to DNA binding, and can assume two conformations, depending on whether a second H2A-H2B dimer is present. Our data suggest a compelling mechanism for how FACT maintains chromatin integrity during polymerase passage, by facilitating removal of the H2A-H2B dimer, stabilizing intermediate subnucleosomal states and promoting nucleosome reassembly. Our findings reconcile discrepancies regarding the many roles of FACT and underscore the dynamic interactions between histone chaperones and nucleosomes.


  
The first dinosaur egg was soft 期刊论文
NATURE, 2020
作者:  Rodstrom, Karin E. J.;  Kiper, Aytug K.;  Zhang, Wei;  Rinne, Susanne;  Pike, Ashley C. W.;  Goldstein, Matthias;  Conrad, Linus J.;  Delbeck, Martina;  Hahn, Michael G.;  Meier, Heinrich;  Platzk, Magdalena;  Quigley, Andrew;  Speedman, David;  Shrestha, Leela;  Mukhopadhyay, Shubhashish M. M.
收藏  |  浏览/下载:82/0  |  提交时间:2020/07/03

Molecular analyses of newly discovered, embryo-bearing ornithischian and sauropod dinosaur eggs suggest that the ancestral dinosaur egg was soft-shelled, and that hard-shelled eggs evolved independently at least three times in the major dinosaur lineages.


Calcified eggshells protect developing embryos against environmental stress and contribute to reproductive success(1). As modern crocodilians and birds lay hard-shelled eggs, this eggshell type has been inferred for non-avian dinosaurs. Known dinosaur eggshells are characterized by an innermost membrane, an overlying protein matrix containing calcite, and an outermost waxy cuticle(2-7). The calcitic eggshell consists of one or more ultrastructural layers that differ markedly among the three major dinosaur clades, as do the configurations of respiratory pores. So far, only hadrosaurid, a few sauropodomorph and tetanuran eggshells have been discovered  the paucity of the fossil record and the lack of intermediate eggshell types challenge efforts to homologize eggshell structures across all dinosaurs(8-18). Here we present mineralogical, organochemical and ultrastructural evidence for an originally non-biomineralized, soft-shelled nature of exceptionally preserved ornithischianProtoceratopsand basal sauropodomorphMussauruseggs. Statistical evaluation of in situ Raman spectra obtained for a representative set of hard- and soft-shelled, fossil and extant diapsid eggshells clusters the originally organic but secondarily phosphatizedProtoceratopsand the organicMussauruseggshells with soft, non-biomineralized eggshells. Histology corroborates the organic composition of these soft-shelled dinosaur eggs, revealing a stratified arrangement resembling turtle soft eggshell. Through an ancestral-state reconstruction of composition and ultrastructure, we compare eggshells fromProtoceratopsandMussauruswith those from other diapsids, revealing that the first dinosaur egg was soft-shelled. The calcified, hard-shelled dinosaur egg evolved independently at least three times throughout the Mesozoic era, explaining the bias towards eggshells of derived dinosaurs in the fossil record.


  
Structural basis of the activation of a metabotropic GABA receptor 期刊论文
NATURE, 2020
作者:  Montagne, Axel;  39;Orazio, Lina M.
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Metabotropic gamma-aminobutyric acid receptors (GABA(B)) are involved in the modulation of synaptic responses in the central nervous system and have been implicated in neuropsychological conditions that range from addiction to psychosis(1). GABA(B)belongs to class C of the G-protein-coupled receptors, and its functional entity comprises an obligate heterodimer that is composed of the GB1 and GB2 subunits(2). Each subunit possesses an extracellular Venus flytrap domain, which is connected to a canonical seven-transmembrane domain. Here we present four cryo-electron microscopy structures of the human full-length GB1-GB2 heterodimer: one structure of its inactive apo state, two intermediate agonist-bound forms and an active form in which the heterodimer is bound to an agonist and a positive allosteric modulator. The structures reveal substantial differences, which shed light on the complex motions that underlie the unique activation mechanism of GABA(B). Our results show that agonist binding leads to the closure of the Venus flytrap domain of GB1, triggering a series of transitions, first rearranging and bringing the two transmembrane domains into close contact along transmembrane helix 6 and ultimately inducing conformational rearrangements in the GB2 transmembrane domain via a lever-like mechanism to initiate downstream signalling. This active state is stabilized by a positive allosteric modulator binding at the transmembrane dimerization interface.


Cryo-electron microscopy structures of apo, agonist- and positive allosteric modulator-bound forms of the GB1-GB2 heterodimer of the metabotropic gamma-aminobutyric acid (GABA) receptor shed light on the activation mechanism of this receptor.


  
High Rates of Deep Earthquake Dynamic Triggering in the Thermal Halos of Subducting Slabs 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (8)
作者:  Luo, Yantao;  Wiens, Douglas A.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/02
remote triggering  intermediate and deep earthquakes  
Femtosecond-to-millisecond structural changes in a light-driven sodium pump 期刊论文
NATURE, 2020, 583 (7815) : 314-+
作者:  Moore, Luiza;  Leongamornlert, Daniel;  Coorens, Tim H. H.;  Sanders, Mathijs A.;  Ellis, Peter;  Dentro, Stefan C.;  Dawson, Kevin J.;  Butler, Tim;  Rahbari, Raheleh;  Mitchell, Thomas J.;  Maura, Francesco;  Nangalia, Jyoti;  Tarpey, Patrick S.;  Brunner, Simon F.;  Lee-Six, Henry;  Hooks, Yvette;  Moody, Sarah;  Mahbubani, Krishnaa T.;  Jimenez-Linan, Mercedes;  Brosens, Jan J.;  Iacobuzio-Donahue, Christine A.;  Martincorena, Inigo;  Saeb-Parsy, Kourosh;  Campbell, Peter J.;  Stratton, Michael R.
收藏  |  浏览/下载:88/0  |  提交时间:2020/07/03

Light-driven sodium pumps actively transport small cations across cellular membranes(1). These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved(2,3), it is unclear how structural alterations overtime allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser(4), we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion bind stransiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.


  
Very regular high-frequency pulsation modes in young intermediate-mass stars 期刊论文
NATURE, 2020, 581 (7807) : 147-+
作者:  Zhao, Chuangqi;  Zhang, Pengchao;  Zhou, Jiajia;  Qi, Shuanhu;  Yamauchi, Yoshihiro;  Shi, Ruirui;  Fang, Ruochen;  Ishida, Yasuhiro;  Wang, Shutao;  Tomsia, Antoni P.;  Jiang, Lei;  Liu, Mingjie
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

Asteroseismology probes the internal structures of stars by using their natural pulsation frequencies(1). It relies on identifying sequences of pulsation modes that can be compared with theoretical models, which has been done successfully for many classes of pulsators, including low-mass solar-type stars(2), red giants(3), high-mass stars(4) and white dwarfs(5). However, a large group of pulsating stars of intermediate mass-the so-called delta Scuti stars-have rich pulsation spectra for which systematic mode identification has not hitherto been possible(6,7). This arises because only a seemingly random subset of possible modes are excited and because rapid rotation tends to spoil regular patterns(8-10). Here we report the detection of remarkably regular sequences of high-frequency pulsation modes in 60 intermediate-mass main-sequence stars, which enables definitive mode identification. The space motions of some of these stars indicate that they are members of known associations of young stars, as confirmed by modelling of their pulsation spectra.


The pulsation spectra of intermediate-mass stars (so-called delta Scuti stars) have been challenging to analyse, but new observations of 60 such stars reveal remarkably regular sequences of high-frequency pulsation modes.