GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Enhanced ferroelectricity in ultrathin films grown directly on silicon 期刊论文
NATURE, 2020, 580 (7804) : 478-+
作者:  Arnold, Fabian M.;  Weber, Miriam S.;  Gonda, Imre;  Gallenito, Marc J.;  Adenau, Sophia;  Egloff, Pascal;  Zimmermann, Iwan;  Hutter, Cedric A. J.;  Huerlimann, Lea M.;  Peters, Eike E.;  Piel, Joern;  Meloni, Gabriele;  Medalia, Ohad;  Seeger, Markus A.
收藏  |  浏览/下载:49/0  |  提交时间:2020/07/03

Ultrathin ferroelectric materials could potentially enable low-power perovskite ferroelectric tetragonality logic and nonvolatile memories(1,2). As ferroelectric materials are made thinner, however, the ferroelectricity is usually suppressed. Size effects in ferroelectrics have been thoroughly investigated in perovskite oxides-the archetypal ferroelectric system(3). Perovskites, however, have so far proved unsuitable for thickness scaling and integration with modern semiconductor processes(4). Here we report ferroelectricity in ultrathin doped hafnium oxide (HfO2), a fluorite-structure oxide grown by atomic layer deposition on silicon. We demonstrate the persistence of inversion symmetry breaking and spontaneous, switchable polarization down to a thickness of one nanometre. Our results indicate not only the absence of a ferroelectric critical thickness but also enhanced polar distortions as film thickness is reduced, unlike in perovskite ferroelectrics. This approach to enhancing ferroelectricity in ultrathin layers could provide a route towards polarization-driven memories and ferroelectric-based advanced transistors. This work shifts the search for the fundamental limits of ferroelectricity to simpler transition-metal oxide systems-that is, from perovskite-derived complex oxides to fluorite-structure binary oxides-in which '  reverse'  size effects counterintuitively stabilize polar symmetry in the ultrathin regime.


Enhanced switchable ferroelectric polarization is achieved in doped hafnium oxide films grown directly onto silicon using low-temperature atomic layer deposition, even at thicknesses of just one nanometre.


  
Experimental demonstration of memory-enhanced quantum communication 期刊论文
NATURE, 2020
作者:  Quinn, Robert A.;  Melnik, Alexey, V;  Vrbanac, Alison;  Fu, Ting;  Patras, Kathryn A.;  Christy, Mitchell P.;  Bodai, Zsolt;  Belda-Ferre, Pedro;  Tripathi, Anupriya;  Chung, Lawton K.;  Downes, Michael;  Welch, Ryan D.;  Quinn, Melissa;  Humphrey, Greg;  Panitchpakdi, Morgan;  Weldon, Kelly C.;  Aksenov, Alexander;  da Silva, Ricardo;  Avila-Pacheco, Julian;  Clish, Clary;  Bae, Sena;  Mallick, Himel;  Franzosa, Eric A.;  Lloyd-Price, Jason;  Bussell, Robert;  Thron, Taren;  Nelson, Andrew T.;  Wang, Mingxun;  Leszczynski, Eric;  Vargas, Fernando;  Gauglitz, Julia M.;  Meehan, Michael J.;  Gentry, Emily;  Arthur, Timothy D.;  Komor, Alexis C.;  Poulsen, Orit;  Boland, Brigid S.;  Chang, John T.;  Sandborn, William J.;  Lim, Meerana;  Garg, Neha;  Lumeng, Julie C.;  Xavier, Ramnik J.;  Kazmierczak, Barbara, I;  Jain, Ruchi;  Egan, Marie;  Rhee, Kyung E.;  Ferguson, David;  Raffatellu, Manuela;  Vlamakis, Hera;  Haddad, Gabriel G.;  Siegel, Dionicio;  Huttenhower, Curtis;  Mazmanian, Sarkis K.;  Evans, Ronald M.;  Nizet, Victor;  Knight, Rob;  Dorrestein, Pieter C.
收藏  |  浏览/下载:36/0  |  提交时间:2020/07/03

The ability to communicate quantum information over long distances is of central importance in quantum science and engineering(1). Although some applications of quantum communication such as secure quantum key distribution(2,3) are already being successfully deployed(4-7), their range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising unconditional security(8). Alternatively, quantum repeaters(9), which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge(10-16), requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we use a single solid-state spin memory integrated in a nanophotonic diamond resonator(17-19) to implement asynchronous photonic Bell-state measurements, which are a key component of quantum repeaters. In a proof-of-principle experiment, we demonstrate high-fidelity operation that effectively enables quantum communication at a rate that surpasses the ideal loss-equivalent direct-transmission method while operating at megahertz clock speeds. These results represent a crucial step towards practical quantum repeaters and large-scale quantum networks(20,21).


A solid-state spin memory is used to demonstrate quantum repeater functionality, which has the potential to overcome photon losses involved in long-distance transmission of quantum information.


  
Entanglement of two quantum memories via fibres over dozens of kilometres 期刊论文
NATURE, 2020, 578 (7794) : 240-+
作者:  Cabrita, Rita;  Lauss, Martin;  Sanna, Adriana;  Donia, Marco;  Larsen, Mathilde Skaarup;  Mitra, Shamik;  Johansson, Iva;  Phung, Bengt;  Harbst, Katja;  Vallon-Christersson, Johan;  van Schoiack, Alison;  Loevgren, Kristina;  Warren, Sarah;  Jirstroem, Karin;  Olsson, Hakan;  Pietras, Kristian;  Ingvar, Christian;  Isaksson, Karolin;  Schadendorf, Dirk;  Schmidt, Henrik;  Bastholt, Lars;  Carneiro, Ana;  Wargo, Jennifer A.;  Svane, Inge Marie;  Jonsson, Goran
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

A quantum internet that connects remote quantum processors(1,2) should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress(3-12), at present the maximal physical separation achieved between two nodes is 1.3 kilometres(10), and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement(13-15) and we use quantum frequency conversion(16) to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference(17,18) and entanglement over 50 kilometres of coiled fibres via single-photon interference(19). Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.


  
The HyPer(sonal) Piano Project : towards a (per)sonal topography of grand piano and electronics [interactive pdf] 科技报告
来源:Center for International Climate and Environmental Research-Oslo (CICERO). 出版年: 2016
作者:  Qvenild, Morten
收藏  |  浏览/下载:3/0  |  提交时间:2019/04/05
hyperinstrument  piano  interagency  music technology  technology innovation  jazz  pop music  personal piano  distributed cognition  improvisation  composition  performance studies  interaction  interconnectivitiy  memories  augmented  palette  sound art  sound  sound engineering  microphones  VDP::Humaniora: 000::Musikkvitenskap: 110::Annen musikkvitenskap: 119