GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
LEM2 phase separation promotes ESCRT-mediated nuclear envelope reformation 期刊论文
NATURE, 2020
作者:  Deshaies, Raymond J.
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Following cell division, phase separation of the transmembrane adaptor LEM2 ensures that the ESCRT machinery remodels microtubules and seals the nuclear envelope.


During cell division, remodelling of the nuclear envelope enables chromosome segregation by the mitotic spindle(1). The reformation of sealed nuclei requires ESCRTs (endosomal sorting complexes required for transport) and LEM2, a transmembrane ESCRT adaptor(2-4). Here we show how the ability of LEM2 to condense on microtubules governs the activation of ESCRTs and coordinated spindle disassembly. The LEM motif of LEM2 binds BAF, conferring on LEM2 an affinity for chromatin(5,6), while an adjacent low-complexity domain (LCD) promotes LEM2 phase separation. A proline-arginine-rich sequence within the LCD binds to microtubules and targets condensation of LEM2 to spindle microtubules that traverse the nascent nuclear envelope. Furthermore, the winged-helix domain of LEM2 activates the ESCRT-II/ESCRT-III hybrid protein CHMP7 to form co-oligomeric rings. Disruption of these events in human cells prevented the recruitment of downstream ESCRTs, compromised spindle disassembly, and led to defects in nuclear integrity and DNA damage. We propose that during nuclear reassembly LEM2 condenses into a liquid-like phase and coassembles with CHMP7 to form a macromolecular O-ring seal at the confluence between membranes, chromatin and the spindle. The properties of LEM2 described here, and the homologous architectures of related inner nuclear membrane proteins(7,8), suggest that phase separation may contribute to other critical envelope functions, including interphase repair(8-13) and chromatin organization(14-17).


  
Collisional cooling of ultracold molecules 期刊论文
NATURE, 2020, 580 (7802) : 197-+
作者:  Wang, Qinyang;  Wang, Yupeng;  Ding, Jingjin;  Wang, Chunhong;  Zhou, Xuehan;  Gao, Wenqing;  Huang, Huanwei;  Shao, Feng;  Liu, Zhibo
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

Since the original work on Bose-Einstein condensation(1,2), the use of quantum degenerate gases of atoms has enabled the quantum emulation of important systems in condensed matter and nuclear physics, as well as the study of many-body states that have no analogue in other fields of physics(3). Ultracold molecules in the micro- and nanokelvin regimes are expected to bring powerful capabilities to quantum emulation(4) and quantum computing(5), owing to their rich internal degrees of freedom compared to atoms, and to facilitate precision measurement and the study of quantum chemistry(6). Quantum gases of ultracold atoms can be created using collision-based cooling schemes such as evaporative cooling, but thermalization and collisional cooling have not yet been realized for ultracold molecules. Other techniques, such as the use of supersonic jets and cryogenic buffer gases, have reached temperatures limited to above 10 millikelvin(7,8). Here we show cooling of NaLi molecules to micro- and nanokelvin temperatures through collisions with ultracold Na atoms, with both molecules and atoms prepared in their stretched hyperfine spin states. We find a lower bound on the ratio of elastic to inelastic molecule-atom collisions that is greater than 50-large enough to support sustained collisional cooling. By employing two stages of evaporation, we increase the phase-space density of the molecules by a factor of 20, achieving temperatures as low as 220 nanokelvin. The favourable collisional properties of the Na-NaLi system could enable the creation of deeply quantum degenerate dipolar molecules and raises the possibility of using stretched spin states in the cooling of other molecules.


NaLi molecules are cooled to micro- and nanokelvin temperatures through collisions with ultracold Na atoms by using molecules and atoms in stretched hyperfine spin states and applying two evaporation stages.


  
Stress- and ubiquitylation-dependent phase separation of the proteasome 期刊论文
NATURE, 2020, 578 (7794) : 296-+
作者:  Jewell, Jessica;  Emmerling, Johannes;  Vinichenko, Vadim;  Bertram, Christoph;  Berger, Loic;  Daly, Hannah E.;  Keppo, Ilkka;  Krey, Volker;  Gernaat, David E. H. J.;  Fragkiadakis, Kostas;  McCollum, David;  Paroussas, Leonidas;  Riahi, Keywan;  Tavoni, Massimo;  van Vuuren, Detlef
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

The proteasome is a major proteolytic machine that regulates cellular proteostasis through selective degradation of ubiquitylated proteins(1,2). A number of ubiquitin-related molecules have recently been found to be involved in the regulation of biomolecular condensates or membraneless organelles, which arise by liquid-liquid phase separation of specific biomolecules, including stress granules, nuclear speckles and autophagosomes(3-8), but it remains unclear whether the proteasome also participates in such regulation. Here we reveal that proteasome-containing nuclear foci form under acute hyperosmotic stress. These foci are transient structures that contain ubiquitylated proteins, p97 (also known as valosin-containing protein (VCP)) and multiple proteasome-interacting proteins, which collectively constitute a proteolytic centre. The major substrates for degradation by these foci were ribosomal proteins that failed to properly assemble. Notably, the proteasome foci exhibited properties of liquid droplets. RAD23B, a substrate-shuttling factor for the proteasome, and ubiquitylated proteins were necessary for formation of proteasome foci. In mechanistic terms, a liquid-liquid phase separation was triggered by multivalent interactions of two ubiquitin-associated domains of RAD23B and ubiquitin chains consisting of four or more ubiquitin molecules. Collectively, our results suggest that ubiquitin-chain-dependent phase separation induces the formation of a nuclear proteolytic compartment that promotes proteasomal degradation.


Hyperosmotic stress leads to a phase separation of the proteasome, triggered by interactions between RAD23B and ubiquitylated proteins, which bring together p97 and proteasome-associated proteins into nuclear proteolytic foci.


  
Time-dependent view of an isotope effect in electron-nuclear nonequilibrium dynamics with applications to N-2 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (23) : 5890-5895
作者:  Ajay, Jayanth S.;  Komarova, Ksenia G.;  Remacle, Francoise;  Levine, R. D.
收藏  |  浏览/下载:0/0  |  提交时间:2019/11/27
diabatic electronic states  nuclear phase  electronic coherence  photodissociation  nonstationary states  
West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013 科技报告
来源:US Department of Energy (DOE). 出版年: 2014
作者:  Rendall, John D.;  Steiner, Alison F.;  Pendl, Michael P.
收藏  |  浏览/下载:6/0  |  提交时间:2019/04/05
West Valley Demonstration Project  WVDP  Annual Site Environmental Report  ASER  Calendar Year 2013  CH2M HILL • B&W West Valley  LLC  DE-EM0001529  Public Health and Safety and the Environment Are Protected  Airborne and Waterborne Releases to the MEOSI  Climate Change  DOE/NYSERDA Consent Decree  Dose Assessment  Dose to Biota  Drinking Water  Environmental Characterization Support Services  Environmental Compliance  Environmental Management System: EMS  Environmental Monitoring  Groundwater Protection Program  High-Level Waste (HLW) Canister Interim Storage System  HLW canister storage pad  National Emissions Standards for Hazardous Air Pollutants  NESHAP  National Environmental Policy Act  NEPA  North Plateau Full-Scale Permeable Treatment Wall  PTW  Nuclear Regulatory Commission (NRC)-Licensed Disposal Area  NDA  Performance Indicators  Phase 1 Decommissioning and Facility Disposition Contract  Phase 1 Studies  Quality Assurance  Record of Decision  ROD  Resource Conservation and Recovery Act  RCRA  Safety Success  Site Sustainability Plan  SSP  State Pollutant Discharge Elimination System (SPDES) Permit Noncompliance  SPDES  Tank and Vault Drying System  T&VDS  Vertical Storage Casks  VSC  Waste Minimization and Pollution Prevention  Waste Tank Farm  WTF  Waste-Incidental-to-Reprocessing  WIR