GSTDTAP

浏览/检索结果: 共16条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
IISD发布化石燃料转型和生产逐步退出指南 快报文章
资源环境快报,2024年第10期
作者:  牛艺博
Microsoft Word(25Kb)  |  收藏  |  浏览/下载:602/0  |  提交时间:2024/05/31
Climate Change  Fossil Fuels  Phase-out  
Massively parallel coherent laser ranging using a soliton microcomb 期刊论文
NATURE, 2020, 581 (7807) : 164-+
作者:  Casanova, Emmanuelle;  Knowles, Timothy D. J.;  Bayliss, Alex;  Dunne, Julie;  Baranski, Marek Z.;  Denaire, Anthony;  Lefranc, Philippe;  di Lernia, Savino;  Roffet-Salque, Melanie;  Smyth, Jessica;  Barclay, Alistair;  Gillard, Toby;  Classen, Erich;  Coles, Bryony;  Ilett, Michael;  Jeunesse, Christian;  Krueger, Marta;  Marciniak, Arkadiusz;  Minnitt, Steve;  Rotunno, Rocco;  van de Velde, Pieter;  van Wijk, Ivo;  Cotton, Jonathan;  Daykin, Andy;  Evershed, Richard P.
收藏  |  浏览/下载:62/0  |  提交时间:2020/07/03

Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)(1) is used for long-range three-dimensional distance and velocimetry in autonomous driving(2,3). FMCW lidar maps distance to frequency(4,5) using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar(6,7) and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped(8) and highly coherent(5) laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb(9). By fast chirping of the pump laser in the soliton existence range(10) of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays(11) based on nanophotonic gratings(12), provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems.


  
Boundaries transformed in pure metals 期刊论文
NATURE, 2020, 579 (7799) : 350-351
作者:  Ledford, Heidi
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Interfaces between the tiny crystal grains that make up solid copper have been shown to change from one ordered phase to another, independently of the phase adopted by the crystals, opening up prospects for materials development.


Polymorphs of grain boundaries in copper visualized and modelled.


  
Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen 期刊论文
NATURE, 2020, 577 (7792) : 631-+
作者:  Zhuang, Zhe;  Yu, Jin-Quan
收藏  |  浏览/下载:32/0  |  提交时间:2020/07/03

Hydrogen has been an essential element in the development of atomic, molecular and condensed matter physics(1). It is predicted that hydrogen should have a metal state(2)  however, understanding the properties of dense hydrogen has been more complex than originally thought, because under extreme conditions the electrons and protons are strongly coupled to each other and ultimately must both be treated as quantum particles(3,4). Therefore, how and when molecular solid hydrogen may transform into a metal is an open question. Although the quest for metal hydrogen has pushed major developments in modern experimental high-pressure physics, the various claims of its observation remain unconfirmed(5-7). Here a discontinuous change of the direct bandgap of hydrogen, from 0.6 electronvolts to below 0.1 electronvolts, is observed near 425 gigapascals. This result is most probably associated with the formation of the metallic state because the nucleus zero-point energy is larger than this lowest bandgap value. Pressures above 400 gigapascals are achieved with the recently developed toroidal diamond anvil cell(8), and the structural changes and electronic properties of dense solid hydrogen at 80 kelvin are probed using synchrotron infrared absorption spectroscopy. The continuous downward shifts of the vibron wavenumber and the direct bandgap with increased pressure point to the stability of phase-III hydrogen up to 425 gigapascals. The present data suggest that metallization of hydrogen proceeds within the molecular solid, in good agreement with previous calculations that capture many-body electronic correlations(9).


  
Attosecond pulse shaping using a seeded free-electron laser 期刊论文
NATURE, 2020
作者:  Achar, Yathish Jagadheesh;  Adhil, Mohamood;  Choudhary, Ramveer;  Gilbert, Nick;  Foiani, Marco
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Generation of intense attosecond waveforms with independently controllable amplitude and phase is performed by using a seeded free-electron laser.


Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales(1-3). The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation(4-7). Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters(8,9), multilayer mirrors(10) and manipulation of the driving field(11). However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules(12,13). Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot(14-16). Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser(17). We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.


  
Proneness of European Catchments to Multiyear Streamflow Droughts 期刊论文
WATER RESOURCES RESEARCH, 2019
作者:  Brunner, Manuela I.;  Tallaksen, Lena M.
收藏  |  浏览/下载:10/0  |  提交时间:2020/02/16
stochastic simulation  phase randomization  threshold  water management  water stores  climate change  
Long-term changes in precipitation phase in Europe in cold half year 期刊论文
ATMOSPHERIC RESEARCH, 2019, 227: 79-88
作者:  Hyncica, Martin;  Huth, Radan
收藏  |  浏览/下载:63/0  |  提交时间:2019/11/27
Precipitation phase  Trends  Temperature  Europe  Climate change  
A triage framework for managing novel, hybrid, and designed marine ecosystems 期刊论文
GLOBAL CHANGE BIOLOGY, 2019, 25 (10) : 3215-3223
作者:  Schlappy, Marie-Lise;  Hobbs, Richard J.
收藏  |  浏览/下载:13/0  |  提交时间:2019/11/27
climate change  conservation  human values  marine ecosystem  marine phase shifts  novel ecosystem  restoration  
Evidence of Strong Contributions From Mixed-Phase Clouds to Arctic Climate Change 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (5) : 2894-2902
作者:  Tan, Ivy;  Storelvmo, Trude
收藏  |  浏览/下载:15/0  |  提交时间:2019/11/26
Arctic climate change  cloud phase feedback  cloud microphysics  
Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (36) : 8990-8995
作者:  Kumagai, Naoki H.;  Molinos, Jorge Garcia;  Yamano, Hiroya;  Takao, Shintaro;  Fujii, Masahiko;  Yamanaka, Yasuhiro
收藏  |  浏览/下载:13/0  |  提交时间:2019/11/27
climate velocity  coastal tropicalization  community phase shifts  global change  range shifts