GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Massively parallel coherent laser ranging using a soliton microcomb 期刊论文
NATURE, 2020, 581 (7807) : 164-+
作者:  Casanova, Emmanuelle;  Knowles, Timothy D. J.;  Bayliss, Alex;  Dunne, Julie;  Baranski, Marek Z.;  Denaire, Anthony;  Lefranc, Philippe;  di Lernia, Savino;  Roffet-Salque, Melanie;  Smyth, Jessica;  Barclay, Alistair;  Gillard, Toby;  Classen, Erich;  Coles, Bryony;  Ilett, Michael;  Jeunesse, Christian;  Krueger, Marta;  Marciniak, Arkadiusz;  Minnitt, Steve;  Rotunno, Rocco;  van de Velde, Pieter;  van Wijk, Ivo;  Cotton, Jonathan;  Daykin, Andy;  Evershed, Richard P.
收藏  |  浏览/下载:46/0  |  提交时间:2020/07/03

Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)(1) is used for long-range three-dimensional distance and velocimetry in autonomous driving(2,3). FMCW lidar maps distance to frequency(4,5) using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar(6,7) and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped(8) and highly coherent(5) laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb(9). By fast chirping of the pump laser in the soliton existence range(10) of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays(11) based on nanophotonic gratings(12), provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems.


  
Long-term cyclic persistence in an experimental predator-prey system 期刊论文
NATURE, 2020, 577 (7789) : 226-+
作者:  Blasius, Bernd;  Rudolf, Lars;  Weithoff, Guntram;  Gaedke, Ursula;  Fussmann, Gregor F.
收藏  |  浏览/下载:11/0  |  提交时间:2020/04/16

Predator-prey cycles rank among the most fundamental concepts in ecology, are predicted by the simplest ecological models and enable, theoretically, the indefinite persistence of predator and prey(1-4). However, it remains an open question for how long cyclic dynamics can be self-sustained in real communities. Field observations have been restricted to a few cycle periods(5-8) and experimental studies indicate that oscillations may be short-lived without external stabilizing factors(9-19). Here we performed microcosm experiments with a planktonic predator-prey system and repeatedly observed oscillatory time series of unprecedented length that persisted for up to around 50 cycles or approximately 300 predator generations. The dominant type of dynamics was characterized by regular, coherent oscillations with a nearly constant predator-prey phase difference. Despite constant experimental conditions, we also observed shorter episodes of irregular, non-coherent oscillations without any significant phase relationship. However, the predator-prey system showed a strong tendency to return to the dominant dynamical regime with a defined phase relationship. A mathematical model suggests that stochasticity is probably responsible for the reversible shift from coherent to non-coherent oscillations, a notion that was supported by experiments with external forcing by pulsed nutrient supply. Our findings empirically demonstrate the potential for infinite persistence of predator and prey populations in a cyclic dynamic regime that shows resilience in the presence of stochastic events.


  
Interactive effects of temperature and pCO(2) on sponges: from the cradle to the grave 期刊论文
GLOBAL CHANGE BIOLOGY, 2017, 23 (5)
作者:  Bennett, Holly M.;  Altenrath, Christine;  Woods, Lisa;  Davy, Simon K.;  Webster, Nicole S.;  Bell, James J.
收藏  |  浏览/下载:7/0  |  提交时间:2019/04/09
climate change  coral reef  early life-history  heterotroph  ocean acidification  ocean warming  phase shift  phototroph  Porifera