GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Entanglement-based secure quantum cryptography over 1,120 kilometres 期刊论文
NATURE, 2020
作者:  Paldi, Flora;  Alver, Bonnie;  Robertson, Daniel;  Schalbetter, Stephanie A.;  Kerr, Alastair;  Kelly, David A.;  Baxter, Jonathan;  Neale, Matthew J.;  Marston, Adele L.
收藏  |  浏览/下载:78/0  |  提交时间:2020/07/03

An efficient entanglement-based quantum key distribution is sent from the Micius satellite to two ground observatories 1,120 kilometres apart to establish secure quantum cryptography for the exchange ofquantum keys.


Quantum key distribution (QKD)(1-3)is a theoretically secure way of sharing secret keys between remote users. It has been demonstrated in a laboratory over a coiled optical fibre up to 404 kilometres long(4-7). In the field, point-to-point QKD has been achieved from a satellite to a ground station up to 1,200 kilometres away(8-10). However, real-world QKD-based cryptography targets physically separated users on the Earth, for which the maximum distance has been about 100 kilometres(11,12). The use of trusted relays can extend these distances from across a typical metropolitan area(13-16)to intercity(17)and even intercontinental distances(18). However, relays pose security risks, which can be avoided by using entanglement-based QKD, which has inherent source-independent security(19,20). Long-distance entanglement distribution can be realized using quantum repeaters(21), but the related technology is still immature for practical implementations(22). The obvious alternative for extending the range of quantum communication without compromising its security is satellite-based QKD, but so far satellite-based entanglement distribution has not been efficient(23)enough to support QKD. Here we demonstrate entanglement-based QKD between two ground stations separated by 1,120 kilometres at a finite secret-key rate of 0.12 bits per second, without the need for trusted relays. Entangled photon pairs were distributed via two bidirectional downlinks from the Micius satellite to two ground observatories in Delingha and Nanshan in China. The development of a high-efficiency telescope and follow-up optics crucially improved the link efficiency. The generated keys are secure for realistic devices, because our ground receivers were carefully designed to guarantee fair sampling and immunity to all known side channels(24,25). Our method not only increases the secure distance on the ground tenfold but also increases the practical security of QKD to an unprecedented level.


  
Spin squeezing of 10(11) atoms by prediction and retrodiction measurements 期刊论文
NATURE, 2020, 581 (7807) : 159-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

The measurement sensitivity of quantum probes using N uncorrelated particles is restricted by the standard quantum limit(1), which is proportional to 1/root N. This limit, however, can be overcome by exploiting quantum entangled states, such as spin-squeezed states(2). Here we report the measurement-based generation of a quantum state that exceeds the standard quantum limit for probing the collective spin of 10(11) rubidium atoms contained in a macroscopic vapour cell. The state is prepared and verified by sequences of stroboscopic quantum non-demolition (QND) measurements. We then apply the theory of past quantum states(3,4) to obtain spin state information from the outcomes of both earlier and later QND measurements. Rather than establishing a physically squeezed state in the laboratory, the past quantum state represents the combined system information from these prediction and retrodiction measurements. This information is equivalent to a noise reduction of 5.6 decibels and a metrologically relevant squeezing of 4.5 decibels relative to the coherent spin state. The past quantum state yields tighter constraints on the spin component than those obtained by conventional QND measurements. Our measurement uses 1,000 times more atoms than previous squeezing experiments(5-10), with a corresponding angular variance of the squeezed collective spin of 4.6 x 10(-13) radians squared. Although this work is rooted in the foundational theory of quantum measurements, it may find practical use in quantum metrology and quantum parameter estimation, as we demonstrate by applying our protocol to quantum enhanced atomic magnetometry.


  
Debates: Does Information Theory Provide a New Paradigm for Earth Science? Sharper Predictions Using Occam's Digital Razor 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (2)
作者:  Weijs, Steven. V.;  Ruddell, Benjamin. L.
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/02
algorithmic information theory  Occam'  s razor  physically based modeling  model complexity  data compression  data-driven modeling  
Testing Model Representations of Snowpack Liquid Water Percolation Across Multiple Climates 期刊论文
WATER RESOURCES RESEARCH, 2019, 55 (6) : 4820-4838
作者:  Pflug, J. M.;  Liston, G. E.;  Nijssen, B.;  Lundquist, J. D.
收藏  |  浏览/下载:16/0  |  提交时间:2019/11/26
percolation  climate variability  physically based  rain on snow  maritime  SnowModel