GSTDTAP

浏览/检索结果: 共31条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
太阳能将满足2060年中国43.2%的电力需求 快报文章
气候变化快报,2021年第21期
作者:  董利苹
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:776/0  |  提交时间:2021/11/08
Solar Power  Carbon-neutral Electricity System  Cost-competitive  Grid-compatible  
IEA分析ETS对中国电力行业脱碳的潜在影响 快报文章
气候变化快报,2021年第10期
作者:  董利苹
Microsoft Word(21Kb)  |  收藏  |  浏览/下载:480/0  |  提交时间:2021/05/20
China’s ETS  Power Sector Decarbonisation  No Carbon Pricing Scenario  Emissions Trading System Scenario,ETS Scenario  ETS Auctioning Scenario  
Enhanced ferroelectricity in ultrathin films grown directly on silicon 期刊论文
NATURE, 2020, 580 (7804) : 478-+
作者:  Arnold, Fabian M.;  Weber, Miriam S.;  Gonda, Imre;  Gallenito, Marc J.;  Adenau, Sophia;  Egloff, Pascal;  Zimmermann, Iwan;  Hutter, Cedric A. J.;  Huerlimann, Lea M.;  Peters, Eike E.;  Piel, Joern;  Meloni, Gabriele;  Medalia, Ohad;  Seeger, Markus A.
收藏  |  浏览/下载:60/0  |  提交时间:2020/07/03

Ultrathin ferroelectric materials could potentially enable low-power perovskite ferroelectric tetragonality logic and nonvolatile memories(1,2). As ferroelectric materials are made thinner, however, the ferroelectricity is usually suppressed. Size effects in ferroelectrics have been thoroughly investigated in perovskite oxides-the archetypal ferroelectric system(3). Perovskites, however, have so far proved unsuitable for thickness scaling and integration with modern semiconductor processes(4). Here we report ferroelectricity in ultrathin doped hafnium oxide (HfO2), a fluorite-structure oxide grown by atomic layer deposition on silicon. We demonstrate the persistence of inversion symmetry breaking and spontaneous, switchable polarization down to a thickness of one nanometre. Our results indicate not only the absence of a ferroelectric critical thickness but also enhanced polar distortions as film thickness is reduced, unlike in perovskite ferroelectrics. This approach to enhancing ferroelectricity in ultrathin layers could provide a route towards polarization-driven memories and ferroelectric-based advanced transistors. This work shifts the search for the fundamental limits of ferroelectricity to simpler transition-metal oxide systems-that is, from perovskite-derived complex oxides to fluorite-structure binary oxides-in which '  reverse'  size effects counterintuitively stabilize polar symmetry in the ultrathin regime.


Enhanced switchable ferroelectric polarization is achieved in doped hafnium oxide films grown directly onto silicon using low-temperature atomic layer deposition, even at thicknesses of just one nanometre.


  
Non-volatile electric control of spin-charge conversion in a SrTiO3 Rashba system 期刊论文
NATURE, 2020, 580 (7804) : 483-+
作者:  Collombet, Samuel;  Ranisavljevic, Noemie;  Nagano, Takashi;  Varnai, Csilla;  Shisode, Tarak;  Leung, Wing;  Piolot, Tristan;  Galupa, Rafael;  Borensztein, Maud;  Servant, Nicolas;  Fraser, Peter;  Ancelin, Katia;  Heard, Edith
收藏  |  浏览/下载:41/0  |  提交时间:2020/07/03

The polarization direction of a ferroelectric-like state can be used to control the conversion of spin currents into charge currents at the surface of strontium titanate, a non-magnetic oxide.


After 50 years of development, the technology of today'  s electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems(1) needs to be contained. These two factors require the introduction of non-traditional materials and state variables. As recently highlighted(2), the remanence associated with collective switching in ferroic systems is an appealing way to reduce power consumption. A promising approach is spintronics, which relies on ferromagnets to provide non-volatility and to generate and detect spin currents(3). However, magnetization reversal by spin transfer torques(4) is a power-consuming process. This is driving research on multiferroics to achieve low-power electric-field control of magnetization(5), but practical materials are scarce and magnetoelectric switching remains difficult to control. Here we demonstrate an alternative strategy to achieve low-power spin detection, in a non-magnetic system. We harness the electric-field-induced ferroelectric-like state of strontium titanate (SrTiO3)(6-9) to manipulate the spin-orbit properties(10) of a two-dimensional electron gas(11), and efficiently convert spin currents into positive or negative charge currents, depending on the polarization direction. This non-volatile effect opens the way to the electric-field control of spin currents and to ultralow-power spintronics, in which non-volatility would be provided by ferroelectricity rather than by ferromagnetism.


  
Operation of a silicon quantum processor unit cell above one kelvin 期刊论文
NATURE, 2020, 580 (7803) : 350-+
作者:  Han, Kyuho;  Pierce, Sarah E.;  Li, Amy;  Spees, Kaitlyn;  Anderson, Grace R.;  Seoane, Jose A.;  Lo, Yuan-Hung;  Dubreuil, Michael;  Olivas, Micah;  Kamber, Roarke A.;  Wainberg, Michael;  Kostyrko, Kaja;  Kelly, Marcus R.;  Yousefi, Maryam;  Simpkins, Scott W.;  Yao, David
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Quantum computers are expected to outperform conventional computers in several important applications, from molecular simulation to search algorithms, once they can be scaled up to large numbers-typically millions-of quantum bits (qubits)(1-3). For most solid-state qubit technologies-for example, those using superconducting circuits or semiconductor spins-scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature (less than 100 millikelvin)(4-6). Here we demonstrate the operation of a scalable silicon quantum processor unit cell comprising two qubits confined to quantum dots at about 1.5 kelvin. We achieve this by isolating the quantum dots from the electron reservoir, and then initializing and reading the qubits solely via tunnelling of electrons between the two quantum dots(7-9). We coherently control the qubits using electrically driven spin resonance(10,11) in isotopically enriched silicon(12 28)Si, attaining single-qubit gate fidelities of 98.6 per cent and a coherence time of 2 microseconds during '  hot'  operation, comparable to those of spin qubits in natural silicon at millikelvin temperatures(13-16). Furthermore, we show that the unit cell can be operated at magnetic fields as low as 0.1 tesla, corresponding to a qubit control frequency of 3.5 gigahertz, where the qubit energy is well below the thermal energy. The unit cell constitutes the core building block of a full-scale silicon quantum computer and satisfies layout constraints required by error-correction architectures(8),(17). Our work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped He-4 system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array(18,19).


  
Loopy Levy flights enhance tracer diffusion in active suspensions 期刊论文
NATURE, 2020, 579 (7799) : 364-+
作者:  Hu, Bo;  Jin, Chengcheng;  Zeng, Xing;  Resch, Jon M.;  Jedrychowski, Mark P.;  Yang, Zongfang;  Desai, Bhavna N.;  Banks, Alexander S.;  Lowell, Bradford B.;  Mathis, Diane;  Spiegelman, Bruce M.
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

A theoretical framework describing the hydrodynamic interactions between a passive particle and an active medium in out-of-equilibrium systems predicts long-range Levy flights for the diffusing particle driven by the density of the active component.


Brownian motion is widely used as a model of diffusion in equilibrium media throughout the physical, chemical and biological sciences. However, many real-world systems are intrinsically out of equilibrium owing to energy-dissipating active processes underlying their mechanical and dynamical features(1). The diffusion process followed by a passive tracer in prototypical active media, such as suspensions of active colloids or swimming microorganisms(2), differs considerably from Brownian motion, as revealed by a greatly enhanced diffusion coefficient(3-10) and non-Gaussian statistics of the tracer displacements(6,9,10). Although these characteristic features have been extensively observed experimentally, there is so far no comprehensive theory explaining how they emerge from the microscopic dynamics of the system. Here we develop a theoretical framework to model the hydrodynamic interactions between the tracer and the active swimmers, which shows that the tracer follows a non-Markovian coloured Poisson process that accounts for all empirical observations. The theory predicts a long-lived Levy flight regime(11) of the loopy tracer motion with a non-monotonic crossover between two different power-law exponents. The duration of this regime can be tuned by the swimmer density, suggesting that the optimal foraging strategy of swimming microorganisms might depend crucially on their density in order to exploit the Levy flights of nutrients(12). Our framework can be applied to address important theoretical questions, such as the thermodynamics of active systems(13), and practical ones, such as the interaction of swimming microorganisms with nutrients and other small particles(14) (for example, degraded plastic) and the design of artificial nanoscale machines(15).


  
Early transformation of the Chinese power sector to avoid additional coal lock-in 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (2)
作者:  Wang, Huan;  Chen, Wenying;  Bertram, Christoph;  Malik, Aman;  Kriegler, Elmar;  Luderer, Gunnar;  Despres, Jacques;  Jiang, Kejun;  Krey, Volker
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/02
China  power system  coal lock-in  stranded risks  WB2C target  
Compounding climate change impacts during high stress periods for a high wind and solar power system in Texas 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (2)
作者:  Craig, Michael T.;  Jaramillo, Paulina;  Hodge, Bri-Mathias;  Nijssen, Bart;  Brancucci, Carlo
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/02
renewable energy  climate change  power system planning  thermal derating  climate change impacts  climate change adaptation  
A droplet-based electricity generator with high instantaneous power density 期刊论文
NATURE, 2020, 578 (7795) : 392-+
作者:  Dabney, Will;  Kurth-Nelson, Zeb;  Uchida, Naoshige;  Starkweather, Clara Kwon;  Hassabis, Demis;  Munos, Remi;  Botvinick, Matthew
收藏  |  浏览/下载:189/0  |  提交时间:2020/07/03

Extensive efforts have been made to harvest energy from water in the form of raindrops(1-6), river and ocean waves(7,8), tides(9) and others(10-17). However, achieving a high density of electrical power generation is challenging. Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply. An alternative, the water-droplet/solid-based triboelectric nanogenerator, has so far generated peak power densities of less than one watt per square metre, owing to the limitations imposed by interfacial effects-as seen in characterizations of the charge generation and transfer that occur at solid-liquid(1-4) or liquid-liquid(5,18) interfaces. Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene film on an indium tin oxide substrate plus an aluminium electrode. We show that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects.


A device involving a polytetrafluoroethylene film, an indium tin oxide substrate and an aluminium electrode allows improved electricity generation from water droplets, which bridge the previously disconnected circuit components.


  
Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids 期刊论文
NATURE, 2020
作者:  Nixon, Christopher C.;  Mavigner, Maud;  Sampey, Gavin C.;  Brooks, Alyssa D.;  Spagnuolo, Rae Ann;  Irlbeck, David M.;  Mattingly, Cameron;  Ho, Phong T.;  Schoof, Nils;  Cammon, Corinne G.;  Tharp, Greg K.;  Kanke, Matthew;  Wang, Zhang;  Cleary, Rachel A.;  Upadhyay, Amit A.;  De, Chandrav;  Wills, Saintedym R.;  Falcinelli, Shane D.;  Galardi, Cristin;  Walum, Hasse;  Schramm, Nathaniel J.;  Deutsch, Jennifer;  Lifson, Jeffrey D.;  Fennessey, Christine M.;  Keele, Brandon F.;  Jean, Sherrie;  Maguire, Sean;  Liao, Baolin;  Browne, Edward P.;  Ferris, Robert G.;  Brehm, Jessica H.;  Favre, David;  Vanderford, Thomas H.;  Bosinger, Steven E.;  Jones, Corbin D.;  Routy, Jean-Pierre;  Archin, Nancie M.;  Margolis, David M.;  Wahl, Angela;  Dunham, Richard M.;  Silvestri, Guido;  Chahroudi, Ann;  Garcia, J. Victor
收藏  |  浏览/下载:53/0  |  提交时间:2020/07/03

Single-cell RNA sequencing and spatial transcriptomics reveal that the somitogenesis clock is active in mouse gastruloids, which can be induced to generate somites with the correct rostral-caudal patterning.


Gastruloids are three-dimensional aggregates of embryonic stem cells that display key features of mammalian development after implantation, including germ-layer specification and axial organization(1-3). To date, the expression pattern of only a small number of genes in gastruloids has been explored with microscopy, and the extent to which genome-wide expression patterns in gastruloids mimic those in embryos is unclear. Here we compare mouse gastruloids with mouse embryos using single-cell RNA sequencing and spatial transcriptomics. We identify various embryonic cell types that were not previously known to be present in gastruloids, and show that key regulators of somitogenesis are expressed similarly between embryos and gastruloids. Using live imaging, we show that the somitogenesis clock is active in gastruloids and has dynamics that resemble those in vivo. Because gastruloids can be grown in large quantities, we performed a small screen that revealed how reduced FGF signalling induces a short-tail phenotype in embryos. Finally, we demonstrate that embedding in Matrigel induces gastruloids to generate somites with the correct rostral-caudal patterning, which appear sequentially in an anterior-to-posterior direction over time. This study thus shows the power of gastruloids as a model system for exploring development and somitogenesis in vitro in a high-throughput manner.