GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
人类在海洋中的建筑“足迹”首次被量化 快报文章
资源环境快报,2020年第17期
作者:  薛明媚,吴秀平
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:369/0  |  提交时间:2020/09/15
ocean  construction  quantified  
Nearest neighbours reveal fast and slow components of motor learning 期刊论文
NATURE, 2020, 577 (7791) : 526-+
作者:  Kollmorgen, Sepp;  Hahnloser, Richard H. R.;  Mante, Valerio
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

A new method for analysing change in high-dimensional data is based on nearest-neighbour statistics and is applied here to song dynamics during vocal learning in zebra finches, but could potentially be applied to other biological and artificial behaviours.


Changes in behaviour resulting from environmental influences, development and learning(1-5) are commonly quantified on the basis of a few hand-picked features(2-4,6,7) (for example, the average pitch of acoustic vocalizations(3)), assuming discrete classes of behaviours (such as distinct vocal syllables)(2,3,8-10). However, such methods generalize poorly across different behaviours and model systems and may miss important components of change. Here we present a more-general account of behavioural change that is based on nearest-neighbour statistics(11-13), and apply it to song development in a songbird, the zebra finch(3). First, we introduce the concept of '  repertoire dating'  , whereby each rendition of a behaviour (for example, each vocalization) is assigned a repertoire time, reflecting when similar renditions were typical in the behavioural repertoire. Repertoire time isolates the components of vocal variability that are congruent with long-term changes due to vocal learning and development, and stratifies the behavioural repertoire into '  regressions'  , '  anticipations'  and '  typical renditions'  . Second, we obtain a holistic, yet low-dimensional, description of vocal change in terms of a stratified '  behavioural trajectory'  , revealing numerous previously unrecognized components of behavioural change on fast and slow timescales, as well as distinct patterns of overnight consolidation(1,2,4,14,15) across the behavioral repertoire. We find that diurnal changes in regressions undergo only weak consolidation, whereas anticipations and typical renditions consolidate fully. Because of its generality, our nonparametric description of how behaviour evolves relative to itself-rather than to a potentially arbitrary, experimenter-defined goal(2,3,14,16)-appears well suited for comparing learning and change across behaviours and species(17,18), as well as biological and artificial systems(5).


  
Global-scale human impact on delta morphology has led to net land area gain 期刊论文
NATURE, 2020, 577 (7791) : 514-+
作者:  Nienhuis, J. H.;  Ashton, A. D.;  Edmonds, D. A.;  Hoitink, A. J. F.;  Kettner, A. J.;  Rowland, J. C.;  Tornqvist, T. E.
收藏  |  浏览/下载:48/0  |  提交时间:2020/05/13

River deltas rank among the most economically and ecologically valuable environments on Earth. Even in the absence of sea-level rise, deltas are increasingly vulnerable to coastal hazards as declining sediment supply and climate change alter their sediment budget, affecting delta morphology and possibly leading to erosion(1-3). However, the relationship between deltaic sediment budgets, oceanographic forces of waves and tides, and delta morphology has remained poorly quantified. Here we show how the morphology of about 11,000 coastal deltas worldwide, ranging from small bayhead deltas to mega-deltas, has been affected by river damming and deforestation. We introduce a model that shows that present-day delta morphology varies across a continuum between wave (about 80 per cent), tide (around 10 per cent) and river (about 10 per cent) dominance, but that most large deltas are tide- and river-dominated. Over the past 30 years, despite sea-level rise, deltas globally have experienced a net land gain of 54 +/- 12 square kilometres per year (2 standard deviations), with the largest 1 per cent of deltas being responsible for 30 per cent of all net land area gains. Humans are a considerable driver of these net land gains-25 per cent of delta growth can be attributed to deforestation-induced increases in fluvial sediment supply. Yet for nearly 1,000 deltas, river damming(4) has resulted in a severe (more than 50 per cent) reduction in anthropogenic sediment flux, forcing a collective loss of 12 +/- 3.5 square kilometres per year (2 standard deviations) of deltaic land. Not all deltas lose land in response to river damming: deltas transitioning towards tide dominance are currently gaining land, probably through channel infilling. With expected accelerated sea-level rise(5), however, recent land gains are unlikely to be sustained throughout the twenty-first century. Understanding the redistribution of sediments by waves and tides will be critical for successfully predicting human-driven change to deltas, both locally and globally.


A global study of river deltas shows a net increase in delta area by about 54 km(2) yr(-1) over the past 30 years, in part due to deforestation-induced sediment delivery increase.


  
The past and future of global river ice 期刊论文
NATURE, 2020, 577 (7788) : 69-+
作者:  Yang, Xiao;  Pavelsky, Tamlin M.;  Allen, George H.
收藏  |  浏览/下载:43/0  |  提交时间:2020/05/13

More than one-third of Earth'  s landmass is drained by rivers that seasonally freeze over. Ice transforms the hydrologic(1,2), ecologic(3,4), climatic(5) and socio-economic(6-8) functions of river corridors. Although river ice extent has been shown to be declining in many regions of the world(1), the seasonality, historical change and predicted future changes in river ice extent and duration have not yet been quantified globally. Previous studies of river ice, which suggested that declines in extent and duration could be attributed to warming temperatures(9,10), were based on data from sparse locations. Furthermore, existing projections of future ice extent are based solely on the location of the 0-degrees C isotherm11. Here, using satellite observations, we show that the global extent of river ice is declining, and we project a mean decrease in seasonal ice duration of 6.10 +/- 0.08 days per 1-degrees C increase in global mean surface air temperature. We tracked the extent of river ice using over 400,000 clear-sky Landsat images spanning 1984-2018 and observed a mean decline of 2.5 percentage points globally in the past three decades. To project future changes in river ice extent, we developed an observationally calibrated and validated model, based on temperature and season, which reduced the mean bias by 87 per cent compared with the 0-degree-Celsius isotherm approach. We applied this model to future climate projections for 2080-2100: compared with 2009-2029, the average river ice duration declines by 16.7 days under Representative Concentration Pathway (RCP) 8.5, whereas under RCP 4.5 it declines on average by 7.3 days. Our results show that, globally, river ice is measurably declining and will continue to decline linearly with projected increases in surface air temperature towards the end of this century.


  
Importance and vulnerability of the world's water towers 期刊论文
NATURE, 2020, 577 (7790) : 364-+
作者:  Krebs, John R.;  Hassell, Michael
收藏  |  浏览/下载:66/0  |  提交时间:2020/04/16

Mountains are the water towers of the world, supplying a substantial part of both natural and anthropogenic water demands(1,2). They are highly sensitive and prone to climate change(3,4), yet their importance and vulnerability have not been quantified at the global scale. Here we present a global water tower index (WTI), which ranks all water towers in terms of their water-supplying role and the downstream dependence of ecosystems and society. For each water tower, we assess its vulnerability related to water stress, governance, hydropolitical tension and future climatic and socioeconomic changes. We conclude that the most important (highest WTI) water towers are also among the most vulnerable, and that climatic and socio-economic changes will affect them profoundly. This could negatively impact 1.9 billion people living in (0.3 billion) or directly downstream of (1.6 billion) mountainous areas. Immediate action is required to safeguard the future of the world'  s most important and vulnerable water towers.