GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

已选(0)清除 条数/页:   排序方式:
Integrated spatial analysis for human-wildlife coexistence in the American West 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (2)
作者:  Carter, Neil;  Williamson, Matthew A.;  Gilbert, Sophie;  Lischka, Stacy A.;  Prugh, Laura R.;  Lawler, Joshua J.;  Metcalf, Alexander L.;  Jacob, Aerin L.;  Beltran, Bray J.;  Castro, Antonio J.;  Sage, Abigail;  Burnham, Morey
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/02
coexistence  spatial integration  conservation planning  wildlife  
Bacterial coexistence driven by motility and spatial competition 期刊论文
NATURE, 2020, 578 (7796) : 588-+
作者:  Micke, P.;  Leopold, T.;  King, S. A.;  Benkler, E.;  Spiess, L. J.;  Schmoeger, L.;  Schwarz, M.;  Crespo Lopez-Urrutia, J. R.;  Schmidt, P. O.
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

Elucidating elementary mechanisms that underlie bacterial diversity is central to ecology(1,2) and microbiome research(3). Bacteria are known to coexist by metabolic specialization(4), cooperation(5) and cyclic warfare(6-8). Many species are also motile(9), which is studied in terms of mechanism(10,11), benefit(12,13), strategy(14,15), evolution(16,17) and ecology(18,19). Indeed, bacteria often compete for nutrient patches that become available periodically or by random disturbances(2,20,21). However, the role of bacterial motility in coexistence remains unexplored experimentally. Here we show that-for mixed bacterial populations that colonize nutrient patches-either population outcompetes the other when low in relative abundance. This inversion of the competitive hierarchy is caused by active segregation and spatial exclusion within the patch: a small fast-moving population can outcompete a large fast-growing population by impeding its migration into the patch, while a small fast-growing population can outcompete a large fast-moving population by expelling it from the initial contact area. The resulting spatial segregation is lost for weak growth-migration trade-offs and a lack of virgin space, but is robust to population ratio, density and chemotactic ability, and is observed in both laboratory and wild strains. These findings show that motility differences and their trade-offs with growth are sufficient to promote diversity, and suggest previously undescribed roles for motility in niche formation and collective expulsion-containment strategies beyond individual search and survival.


In mixed bacterial populations that colonize nutrient patches, a growth-migration trade-off can lead to spatial exclusion that provides an advantage to populations that become rare, thereby stabilizing the community.


  
Evolution of resource specialisation in competitive metacommunities 期刊论文
ECOLOGY LETTERS, 2019, 22 (11) : 1746-1756
作者:  Wickman, Jonas;  Diehl, Sebastian;  Brannstrom, Ake
收藏  |  浏览/下载:22/0  |  提交时间:2019/11/27
Adaptive dynamics  coexistence  consumer-resource interactions  ESS  spatial models  
Variation between individuals fosters regional species coexistence 期刊论文
ECOLOGY LETTERS, 2018, 21 (10) : 1496-1504
作者:  Uriarte, Maria;  Menge, Duncan
收藏  |  浏览/下载:22/0  |  提交时间:2019/04/09
Beverton-Holt model  competition  habitat specialisation  interpatch dispersal  intraspecific variability  Jensen'  s inequality  plasticity  spatial coexistence  spatial structure  
Opposing effects of floral visitors and soil conditions on the determinants of competitive outcomes maintain species diversity in heterogeneous landscapes 期刊论文
ECOLOGY LETTERS, 2018, 21 (6) : 865-874
作者:  Lanuza, Jose B.;  Bartomeus, Ignasi;  Godoy, Oscar
收藏  |  浏览/下载:12/0  |  提交时间:2019/04/09
Coexistence  community assembly  demography  fitness  multitrophic interactions  mutualism  niche  pollinators  salinity  spatial structure  
Coexistence, association and competitive ability of Quercus petraea and Quercus robur seedlings in naturally regenerated mixed stands 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2017, 390
作者:  Collet, Catherine;  Manso, Ruben;  Barbeito, Ignacio
收藏  |  浏览/下载:12/0  |  提交时间:2019/04/09
Natural regeneration  Species coexistence  Spatial pattern  Pair correlation function  Competition  Growth model