GSTDTAP

浏览/检索结果: 共14条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
COVID-19敲响强化全球粮食系统的警钟 快报文章
气候变化快报,2020年第13期
作者:  曾静静
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:401/0  |  提交时间:2020/07/04
food system  extreme events  systems approach  
Single-chain heteropolymers transport protons selectively and rapidly 期刊论文
NATURE, 2020, 577 (7789) : 216-+
作者:  Jiang, Tao;  Hall, Aaron;  Eres, Marco;  Hemmatian, Zahra;  Qiao, Baofu;  Zhou, Yun;  Ruan, Zhiyuan;  Couse, Andrew D.;  Heller, William T.;  Huang, Haiyan;  de la Cruz, Monica Olvera;  Rolandi, Marco;  Xu, Ting
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Precise protein sequencing and folding are believed to generate the structure and chemical diversity of natural channels(1,2), both of which are essential to synthetically achieve proton transport performance comparable to that seen in natural systems. Geometrically defined channels have been fabricated using peptides, DNAs, carbon nanotubes, sequence-defined polymers and organic frameworks(3-13). However, none of these channels rivals the performance observed in their natural counterparts. Here we show that without forming an atomically structured channel, four-monomer-based random heteropolymers (RHPs)(14) can mimic membrane proteins and exhibit selective proton transport across lipid bilayers at a rate similar to those of natural proton channels. Statistical control over the monomer distribution in an RHP leads to segmental heterogeneity in hydrophobicity, which facilitates the insertion of single RHPs into the lipid bilayers. It also results in bilayer-spanning segments containing polar monomers that promote the formation of hydrogen-bonded chains(15,16) for proton transport. Our study demonstrates the importance of the adaptability that is enabled by statistical similarity among RHP chains and of the modularity provided by the chemical diversity of monomers, to achieve uniform behaviour in heterogeneous systems. Our results also validate statistical randomness as an unexplored approach to realize protein-like behaviour at the single-polymer-chain level in a predictable manner.


  
Months-long thousand-kilometre-scale wobbling before great subduction earthquakes 期刊论文
NATURE, 2020, 580 (7805) : 628-+
作者:  Son, Hyungmok;  Park, Juliana J.;  Ketterle, Wolfgang;  Jamison, Alan O.
收藏  |  浏览/下载:16/0  |  提交时间:2020/05/13

Observed reversals in GNSS surface motions suggests greatly enhanced slab pull in the months preceding the great subduction earthquakes in Maule (Chile, 2010) and Tohoku-oki (Japan, 2011) of moment magnitudes 8.8 and 9.0.


Megathrust earthquakes are responsible for some of the most devastating natural disasters(1). To better understand the physical mechanisms of earthquake generation, subduction zones worldwide are continuously monitored with geophysical instrumentation. One key strategy is to install stations that record signals from Global Navigation Satellite Systems(2,3) (GNSS), enabling us to track the non-steady surface motion of the subducting and overriding plates before, during and after the largest events(4-6). Here we use a recently developed trajectory modelling approach(7) that is designed to isolate secular tectonic motions from the daily GNSS time series to show that the 2010 Maule, Chile (moment magnitude 8.8) and 2011 Tohoku-oki, Japan (moment magnitude 9.0) earthquakes were preceded by reversals of 4-8 millimetres in surface displacement that lasted several months and spanned thousands of kilometres. Modelling of the surface displacement reversal that occurred before the Tohoku-oki earthquake suggests an initial slow slip followed by a sudden pulldown of the Philippine Sea slab so rapid that it caused a viscoelastic rebound across the whole of Japan. Therefore, to understand better when large earthquakes are imminent, we must consider not only the evolution of plate interface frictional processes but also the dynamic boundary conditions from deeper subduction processes, such as sudden densification of metastable slab.


  
Enhanced ferroelectricity in ultrathin films grown directly on silicon 期刊论文
NATURE, 2020, 580 (7804) : 478-+
作者:  Arnold, Fabian M.;  Weber, Miriam S.;  Gonda, Imre;  Gallenito, Marc J.;  Adenau, Sophia;  Egloff, Pascal;  Zimmermann, Iwan;  Hutter, Cedric A. J.;  Huerlimann, Lea M.;  Peters, Eike E.;  Piel, Joern;  Meloni, Gabriele;  Medalia, Ohad;  Seeger, Markus A.
收藏  |  浏览/下载:49/0  |  提交时间:2020/07/03

Ultrathin ferroelectric materials could potentially enable low-power perovskite ferroelectric tetragonality logic and nonvolatile memories(1,2). As ferroelectric materials are made thinner, however, the ferroelectricity is usually suppressed. Size effects in ferroelectrics have been thoroughly investigated in perovskite oxides-the archetypal ferroelectric system(3). Perovskites, however, have so far proved unsuitable for thickness scaling and integration with modern semiconductor processes(4). Here we report ferroelectricity in ultrathin doped hafnium oxide (HfO2), a fluorite-structure oxide grown by atomic layer deposition on silicon. We demonstrate the persistence of inversion symmetry breaking and spontaneous, switchable polarization down to a thickness of one nanometre. Our results indicate not only the absence of a ferroelectric critical thickness but also enhanced polar distortions as film thickness is reduced, unlike in perovskite ferroelectrics. This approach to enhancing ferroelectricity in ultrathin layers could provide a route towards polarization-driven memories and ferroelectric-based advanced transistors. This work shifts the search for the fundamental limits of ferroelectricity to simpler transition-metal oxide systems-that is, from perovskite-derived complex oxides to fluorite-structure binary oxides-in which '  reverse'  size effects counterintuitively stabilize polar symmetry in the ultrathin regime.


Enhanced switchable ferroelectric polarization is achieved in doped hafnium oxide films grown directly onto silicon using low-temperature atomic layer deposition, even at thicknesses of just one nanometre.


  
Massively parallel coherent laser ranging using a soliton microcomb 期刊论文
NATURE, 2020, 581 (7807) : 164-+
作者:  Casanova, Emmanuelle;  Knowles, Timothy D. J.;  Bayliss, Alex;  Dunne, Julie;  Baranski, Marek Z.;  Denaire, Anthony;  Lefranc, Philippe;  di Lernia, Savino;  Roffet-Salque, Melanie;  Smyth, Jessica;  Barclay, Alistair;  Gillard, Toby;  Classen, Erich;  Coles, Bryony;  Ilett, Michael;  Jeunesse, Christian;  Krueger, Marta;  Marciniak, Arkadiusz;  Minnitt, Steve;  Rotunno, Rocco;  van de Velde, Pieter;  van Wijk, Ivo;  Cotton, Jonathan;  Daykin, Andy;  Evershed, Richard P.
收藏  |  浏览/下载:46/0  |  提交时间:2020/07/03

Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)(1) is used for long-range three-dimensional distance and velocimetry in autonomous driving(2,3). FMCW lidar maps distance to frequency(4,5) using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar(6,7) and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped(8) and highly coherent(5) laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb(9). By fast chirping of the pump laser in the soliton existence range(10) of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays(11) based on nanophotonic gratings(12), provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems.


  
Non-volatile electric control of spin-charge conversion in a SrTiO3 Rashba system 期刊论文
NATURE, 2020, 580 (7804) : 483-+
作者:  Collombet, Samuel;  Ranisavljevic, Noemie;  Nagano, Takashi;  Varnai, Csilla;  Shisode, Tarak;  Leung, Wing;  Piolot, Tristan;  Galupa, Rafael;  Borensztein, Maud;  Servant, Nicolas;  Fraser, Peter;  Ancelin, Katia;  Heard, Edith
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

The polarization direction of a ferroelectric-like state can be used to control the conversion of spin currents into charge currents at the surface of strontium titanate, a non-magnetic oxide.


After 50 years of development, the technology of today'  s electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems(1) needs to be contained. These two factors require the introduction of non-traditional materials and state variables. As recently highlighted(2), the remanence associated with collective switching in ferroic systems is an appealing way to reduce power consumption. A promising approach is spintronics, which relies on ferromagnets to provide non-volatility and to generate and detect spin currents(3). However, magnetization reversal by spin transfer torques(4) is a power-consuming process. This is driving research on multiferroics to achieve low-power electric-field control of magnetization(5), but practical materials are scarce and magnetoelectric switching remains difficult to control. Here we demonstrate an alternative strategy to achieve low-power spin detection, in a non-magnetic system. We harness the electric-field-induced ferroelectric-like state of strontium titanate (SrTiO3)(6-9) to manipulate the spin-orbit properties(10) of a two-dimensional electron gas(11), and efficiently convert spin currents into positive or negative charge currents, depending on the polarization direction. This non-volatile effect opens the way to the electric-field control of spin currents and to ultralow-power spintronics, in which non-volatility would be provided by ferroelectricity rather than by ferromagnetism.


  
Ionic solids from common colloids 期刊论文
NATURE, 2020, 580 (7804) : 487-+
作者:  Delord, T.;  Huillery, P.;  Nicolas, L.;  Hetet, G.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Oppositely charged colloidal particles are assembled in water through an approach that allows electrostatic interactions to be precisely tuned to generate macroscopic single crystals.


From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces(1-4). On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels(5-7). Although various systems have been engineered to grow binary crystals(8-11), native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information(12-18), polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.


  
Balancing security, resilience, and sustainability of urban water supply systems in a desirable operating space 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (3)
作者:  Krueger, Elisabeth H.;  Borchardt, Dietrich;  Jawitz, James W.;  Rao, P. Suresh C.
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/02
sustainable governance  Capital Portfolio Approach (CPA)  water footprint  ecological footprint  coupled natural-human-engineered systems (CNHE)  poverty trap  rigidity trap  
Universal quantum logic in hot silicon qubits 期刊论文
NATURE, 2020, 580 (7803) : 355-+
作者:  Li, Jia;  Yang, Xiangdong;  Liu, Yang;  Huang, Bolong;  Wu, Ruixia;  Zhang, Zhengwei;  Zhao, Bei;  Ma, Huifang;  Dang, Weiqi;  Wei, Zheng;  Wang, Kai;  Lin, Zhaoyang;  Yan, Xingxu;  Sun, Mingzi;  Li, Bo;  Pan, Xiaoqing;  Luo, Jun;  Zhang, Guangyu;  Liu, Yuan;  Huang, Yu;  Duan, Xidong;  Duan, Xiangfeng
收藏  |  浏览/下载:41/0  |  提交时间:2020/07/03

Quantum computation requires many qubits that can be coherently controlled and coupled to each other(1). Qubits that are defined using lithographic techniques have been suggested to enable the development of scalable quantum systems because they can be implemented using semiconductor fabrication technology(2-5). However, leading solid-state approaches function only at temperatures below 100 millikelvin, where cooling power is extremely limited, and this severely affects the prospects of practical quantum computation. Recent studies of electron spins in silicon have made progress towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes(6), gate-based spin readout(7) and coherent single-spin control(8). However, a high-temperature two-qubit logic gate has not yet been demonstrated. Here we show that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set at temperatures greater than one kelvin. We obtain single-qubit control via electron spin resonance and readout using Pauli spin blockade. In addition, we show individual coherent control of two qubits and measure single-qubit fidelities of up to 99.3 per cent. We demonstrate the tunability of the exchange interaction between the two spins from 0.5 to 18 megahertz and use it to execute coherent two-qubit controlled rotations. The demonstration of '  hot'  and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits that host both the quantum hardware and its control circuitry on the same chip, providing a scalable approach towards practical quantum information processing.


  
Classification with a disordered dopantatom network in silicon 期刊论文
NATURE, 2020, 577 (7790) : 341-+
作者:  Vagnozzi, Ronald J.;  Maillet, Marjorie;  Sargent, Michelle A.;  Khalil, Hadi;  Johansen, Anne Katrine Z.;  Schwanekamp, Jennifer A.;  York, Allen J.;  Huang, Vincent;  Nahrendorf, Matthias;  Sadayappan, Sakthivel;  Molkentin, Jeffery D.
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Classification is an important task at which both biological and artificial neural networks excel(1,2). In machine learning, nonlinear projection into a high-dimensional feature space can make data linearly separable(3,4), simplifying the classification of complex features. Such nonlinear projections are computationally expensive in conventional computers. A promising approach is to exploit physical materials systems that perform this nonlinear projection intrinsically, because of their high computational density(5), inherent parallelism and energy efficiency(6,7). However, existing approaches either rely on the systems'  time dynamics, which requires sequential data processing and therefore hinders parallel computation(5,6,8), or employ large materials systems that are difficult to scale up(7). Here we use a parallel, nanoscale approach inspired by filters in the brain(1) and artificial neural networks(2) to perform nonlinear classification and feature extraction. We exploit the nonlinearity of hopping conduction(9-11) through an electrically tunable network of boron dopant atoms in silicon, reconfiguring the network through artificial evolution to realize different computational functions. We first solve the canonical two-input binary classification problem, realizing all Boolean logic gates(12) up to room temperature, demonstrating nonlinear classification with the nanomaterial system. We then evolve our dopant network to realize feature filters(2) that can perform four-input binary classification on the Modified National Institute of Standards and Technology handwritten digit database. Implementation of our material-based filters substantially improves the classification accuracy over that of a linear classifier directly applied to the original data(13). Our results establish a paradigm of silicon-based electronics for smallfootprint and energy-efficient computation(14).