GSTDTAP

浏览/检索结果: 共7条,第1-7条 帮助

已选(0)清除 条数/页:   排序方式:
Structure of the human metapneumovirus polymerase phosphoprotein complex 期刊论文
NATURE, 2020, 577 (7789) : 275-+
作者:  Pan, Junhua;  Qian, Xinlei;  Lattmann, Simon;  El Sahili, Abbas;  Yeo, Tiong Han;  Jia, Huan;  Cressey, Tessa;  Ludeke, Barbara;  Noton, Sarah;  Kalocsay, Marian;  Fearns, Rachel;  Lescar, Julien
收藏  |  浏览/下载:50/0  |  提交时间:2020/07/03

Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) cause severe respiratory diseases in infants and elderly adults(1). No vaccine or effective antiviral therapy currently exists to control RSV or HMPV infections. During viral genome replication and transcription, the tetrameric phosphoprotein P serves as a crucial adaptor between the ribonucleoprotein template and the L protein, which has RNA-dependent RNA polymerase (RdRp), GDP polyribonucleotidyltransferase and cap-specific methyltransferase activities(2,3). How P interacts with L and mediates the association with the free form of N and with the ribonucleoprotein is not clear for HMPV or other major human pathogens, including the viruses that cause measles, Ebola and rabies. Here we report a cryo-electron microscopy reconstruction that shows the ring-shaped structure of the polymerase and capping domains of HMPV-L bound to a tetramer of P. The connector and methyltransferase domains of L are mobile with respect to the core. The putative priming loop that is important for the initiation of RNA synthesis is fully retracted, which leaves space in the active-site cavity for RNA elongation. P interacts extensively with the N-terminal region of L, burying more than 4,016 angstrom(2) of the molecular surface area in the interface. Two of the four helices that form the coiled-coil tetramerization domain of P, and long C-terminal extensions projecting from these two helices, wrap around the L protein in a manner similar to tentacles. The structural versatility of the four P protomers-which are largely disordered in their free state-demonstrates an example of a '  folding-upon-partner-binding'  mechanism for carrying out P adaptor functions. The structure shows that P has the potential to modulate multiple functions of L and these results should accelerate the design of specific antiviral drugs.


  
Structures of human pannexin 1 reveal ion pathways and mechanism of gating 期刊论文
NATURE, 2020
作者:  Krause, David W.;  Hoffmann, Simone;  Hu, Yaoming;  Wible, John R.;  Rougier, Guillermo W.;  Kirk, E. Christopher;  Groenke, Joseph R.;  Rogers, Raymond R.;  Rossie, James B.;  Schultz, Julia A.;  Evans, Alistair R.;  von Koenigswald, Wighart;  Rahantarisoa, Lydia J.
收藏  |  浏览/下载:41/0  |  提交时间:2020/07/03

Cryo-electron microscopy structures of the ATP-permeable channel pannexin 1 reveal a gating mechanism involving multiple distinct ion-conducting pathways.


Pannexin 1 (PANX1) is an ATP-permeable channel with critical roles in a variety of physiological functions such as blood pressure regulation(1), apoptotic cell clearance(2) and human oocyte development(3). Here we present several structures of human PANX1 in a heptameric assembly at resolutions of up to 2.8 angstrom, including an apo state, a caspase-7-cleaved state and a carbenoxolone-bound state. We reveal a gating mechanism that involves two ion-conducting pathways. Under normal cellular conditions, the intracellular entry of the wide main pore is physically plugged by the C-terminal tail. Small anions are conducted through narrow tunnels in the intracellular domain. These tunnels connect to the main pore and are gated by a long linker between the N-terminal helix and the first transmembrane helix. During apoptosis, the C-terminal tail is cleaved by caspase, allowing the release of ATP through the main pore. We identified a carbenoxolone-binding site embraced by W74 in the extracellular entrance and a role for carbenoxolone as a channel blocker. We identified a gap-junction-like structure using a glycosylation-deficient mutant, N255A. Our studies provide a solid foundation for understanding the molecular mechanisms underlying the channel gating and inhibition of PANX1 and related large-pore channels.


  
Dating the skull from Broken Hill, Zambia, and its position in human evolution 期刊论文
NATURE, 2020, 580 (7803) : 372-+
作者:  Mergner, Julia;  Frejno, Martin;  List, Markus;  Papacek, Michael;  Chen, Xia;  Chaudhary, Ajeet;  Samaras, Patroklos;  Richter, Sandra;  Shikata, Hiromasa;  Messerer, Maxim;  Lang, Daniel;  Altmann, Stefan;  Cyprys, Philipp;  Zolg, Daniel P.;  Mathieson, Toby;  Bantscheff, Marcus
收藏  |  浏览/下载:36/0  |  提交时间:2020/07/03

The cranium from Broken Hill (Kabwe) was recovered from cave deposits in 1921, during metal ore mining in what is now Zambia(1). It is one of the best-preserved skulls of a fossil hominin, and was initially designated as the type specimen of Homo rhodesiensis, but recently it has often been included in the taxon Homo heidelbergensis(2-4). However, the original site has since been completely quarried away, and-although the cranium is often estimated to be around 500 thousand years old(5-7)-its unsystematic recovery impedes its accurate dating and placement in human evolution. Here we carried out analyses directly on the skull and found a best age estimate of 299 +/- 25 thousand years (mean +/- 2s). The result suggests that later Middle Pleistocene Africa contained multiple contemporaneous hominin lineages (that is, Homo sapiens(8,9), H. heidelbergensis/H. rhodesiensis and Homo naledi(10,11)), similar to Eurasia, where Homo neanderthalensis, the Denisovans, Homo floresiensis, Homo luzonensis and perhaps also Homo heidelbergensis and Homo erectus(12) were found contemporaneously. The age estimate also raises further questions about the mode of evolution of H. sapiens in Africa and whether H. heidelbergensis/H. rhodesiensis was a direct ancestor of our species(13,14).


  
The molecular basis for sugar import in malaria parasites 期刊论文
NATURE, 2020, 578 (7794) : 321-+
作者:  Zhao, Peishen;  Liang, Yi-Lynn;  Belousoff, Matthew J.;  Deganutti, Giuseppe;  Fletcher, Madeleine M.;  Willard, Francis S.;  Bell, Michael G.;  Christe, Michael E.;  Sloop, Kyle W.;  Inoue, Asuka;  Truong, Tin T.;  Clydesdale, Lachlan;  Furness, Sebastian G. B.;  Christopoulos, Arthur;  Wang, Ming-Wei;  Miller, Laurence J.;  Reynolds, Christopher A.;  Danev, Radostin;  Sexton, Patrick M.;  Wootten, Denise
收藏  |  浏览/下载:73/0  |  提交时间:2020/07/03

Elucidating the mechanism of sugar import requires a molecular understanding of how transporters couple sugar binding and gating events. Whereas mammalian glucose transporters (GLUTs) are specialists(1), the hexose transporter from the malaria parasite Plasmodium falciparum PfHT1(2,3) has acquired the ability to transport both glucose and fructose sugars as efficiently as the dedicated glucose (GLUT3) and fructose (GLUT5) transporters. Here, to establish the molecular basis of sugar promiscuity in malaria parasites, we determined the crystal structure of PfHT1 in complex with d-glucose at a resolution of 3.6 angstrom. We found that the sugar-binding site in PfHT1 is very similar to those of the distantly related GLUT3 and GLUT5 structures(4,5). Nevertheless, engineered PfHT1 mutations made to match GLUT sugar-binding sites did not shift sugar preferences. The extracellular substrate-gating helix TM7b in PfHT1 was positioned in a fully occluded conformation, providing a unique glimpse into how sugar binding and gating are coupled. We determined that polar contacts between TM7b and TM1 (located about 15 angstrom from d-glucose) are just as critical for transport as the residues that directly coordinate d-glucose, which demonstrates a strong allosteric coupling between sugar binding and gating. We conclude that PfHT1 has achieved substrate promiscuity not by modifying its sugar-binding site, but instead by evolving substrate-gating dynamics.


Crystal structure of the Plasmodium falciparum hexose transporter PfHT1 reveals the molecular basis of its ability to transport multiple types of sugar as efficiently as the dedicated mammalian glucose and fructose transporters.


  
Structure of SAGA and mechanism of TBP deposition on gene promoters 期刊论文
NATURE, 2020, 577 (7792) : 711-+
作者:  Xue, Jenny Y.;  Zhao, Yulei;  Aronowitz, Jordan;  Mai, Trang T.;  Vides, Alberto;  Qeriqi, Besnik;  Kim, Dongsung;  Li, Chuanchuan;  de Stanchina, Elisa;  Mazutis, Linas;  Risso, Davide;  Lito, Piro
收藏  |  浏览/下载:67/0  |  提交时间:2020/07/03

SAGA (Spt-Ada-Gcn5-acetyltransferase) is a 19-subunit complex that stimulates transcription via two chromatin-modifying enzymatic modules and by delivering the TATA box binding protein (TBP) to nucleate the pre-initiation complex on DNA, a pivotal event in the expression of protein-encoding genes(1). Here we present the structure of yeast SAGA with bound TBP. The core of the complex is resolved at 3.5 angstrom resolution (0.143 Fourier shell correlation). The structure reveals the intricate network of interactions that coordinate the different functional domains of SAGA and resolves an octamer of histone-fold domains at the core of SAGA. This deformed octamer deviates considerably from the symmetrical analogue in the nucleosome and is precisely tuned to establish a peripheral site for TBP, where steric hindrance represses binding of spurious DNA. Complementary biochemical analysis points to a mechanism for TBP delivery and release from SAGA that requires transcription factor IIA and whose efficiency correlates with the affinity of DNA to TBP. We provide the foundations for understanding the specific delivery of TBP to gene promoters and the multiple roles of SAGA in regulating gene expression.


Structural studies on the yeast transcription coactivator complex SAGA (Spt-Ada-Gcn5-acetyltransferase) provide insights into the mechanism of initiation of regulated transcription by this multiprotein complex, which is conserved among eukaryotes.


  
Urban Political Ecology Beyond Methodological Cityism 期刊论文
INTERNATIONAL JOURNAL OF URBAN AND REGIONAL RESEARCH, 2019, 43 (1) : 63-75
作者:  Connolly, Creighton
收藏  |  浏览/下载:17/0  |  提交时间:2019/04/09
methodological cityism  planetary urbanization  the site multiple  urban metabolism  urban political ecology  
Radiochemically-Supported Microbial Communities: A Potential Mechanism for Biocolloid Production of Importance to Actinide Transport 科技报告
来源:US Department of Energy (DOE). 出版年: 2014
作者:  Moser, Duane P;  Hamilton-Brehm, Scott D;  Fisher, Jenny C;  Bruckner, James C;  Kruger, Brittany;  Sackett, Joshua;  Russell, Charles E;  Onstott, Tullis C;  Czerwinski, Ken
收藏  |  浏览/下载:52/0  |  提交时间:2019/04/05
Due to the legacy of Cold War nuclear weapons testing  the Nevada National Security Site (NNSS  formerly known as the Nevada Test Site (NTS)) contains millions of Curies of radioactive contamination. Presented here is a summary of the results of the first comprehensive study of subsurface microbial communities of radioactive and nonradioactive aquifers at this site. To achieve the objectives of this project  cooperative actions between the Desert Research Institute (DRI)  the Nevada Field Office of the National Nuclear Security Administration (NNSA)  the Underground Test Area Activity (UGTA)  and contractors such as Navarro-Interra (NI)  were required. Ultimately  fluids from 17 boreholes and two water-filled tunnels were sampled (sometimes on multiple occasions and from multiple depths) from the NNSS  the adjacent Nevada Test and Training Range (NTTR)  and a reference hole in the Amargosa Valley near Death Valley. The sites sampled ranged from highly-radioactive nuclear device test cavities to uncontaminated perched and regional aquifers. Specific areas sampled included recharge  intermediate  and discharge zones of a 100  000-km2 internally-draining province  known as the Death Valley Regional Flow System (DVRFS)  which encompasses the entirety of the NNSS/NTTR and surrounding areas. Specific geological features sampled included: West Pahute and Ranier Mesas (recharge zone)  Yucca and Frenchman Flats (transitional zone)  and the Western edge of the Amargosa Valley near Death Valley (discharge zone). The original overarching question underlying the proposal supporting this work was stated as: Can radiochemically-produced substrates support indigenous microbial communities and subsequently stimulate biocolloid formation that can affect radionuclides in NNSS subsurface nuclear test/detonation sites? Radioactive and non-radioactive groundwater samples were thus characterized for physical parameters  aqueous geochemistry  and microbial communities using both DNA- and cultivation-based tools in an effort to understand the drivers of microbial community structure (including radioactivity) and microbial interactions with select radionuclides and other factors across the range of habitats surveyed.