GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
ESA研究指出深海温度变化导致了火山爆发 快报文章
地球科学快报,2022年第04期
作者:  王立伟
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:793/0  |  提交时间:2022/02/25
the temperature deep  volcano eruption  
Spectroscopic confirmation of a mature galaxy cluster at a redshift of 2 期刊论文
NATURE, 2020, 577 (7788) : 39-+
作者:  Willis, J. P.;  Canning, R. E. A.;  Noordeh, E. S.;  Allen, S. W.;  King, A. L.;  Mantz, A.;  Morris, R. G.;  Stanford, S. A.;  Brammer, G.
收藏  |  浏览/下载:37/0  |  提交时间:2020/07/03

Galaxy clusters are the most massive virialized structures in the Universe and are formed through the gravitational accretion of matter over cosmic time(1). The discovery(2) of an evolved galaxy cluster at redshift z = 2, corresponding to a look-back time of 10.4 billion years, provides an opportunity to study its properties. The galaxy cluster XLSSC 122 was originally detected as a faint, extended X-ray source in the XMM Large Scale Structure survey and was revealed to be coincident with a compact over-density of galaxies(2) with photometric redshifts of 1.9 +/- 0.2. Subsequent observations3 at millimetre wavelengths detected a Sunyaev-Zel'  dovich decrement along the line of sight to XLSSC 122, thus confirming the existence of hot intracluster gas, while deep imaging spectroscopy from the European Space Agency'  s X-ray Multi-Mirror Mission (XMM-Newton) revealed(4) an extended, X-ray-bright gaseous atmosphere with a virial temperature of 60 million Kelvin, enriched with metals to the same extent as are local clusters. Here we report optical spectroscopic observations of XLSSC 122 and identify 37 member galaxies at a mean redshift of 1.98, corresponding to a look-back time of 10.4 billion years. We use photometry to determine a mean, dust-free stellar age of 2.98 billion years, indicating that star formation commenced in these galaxies at a mean redshift of 12, when the Universe was only 370 million years old. The full range of inferred formation redshifts, including the effects of dust, covers the interval from 7 to 13. These observations confirm that XLSSC 122 is a remarkably mature galaxy cluster with both evolved stellar populations in the member galaxies and a hot, metal-rich gas composing the intracluster medium.


  
Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites 期刊论文
NATURE, 2020, 580 (7803) : 360-+
作者:  van den Brink, Susanne C.;  Alemany, Anna;  van Batenburg, Vincent;  Moris, Naomi;  Blotenburg, Marloes;  Vivie, Judith;  Baillie-Johnson, Peter;  Nichols, Jennifer;  Sonnen, Katharina F.;  Arias, Alfonso;  van Oudenaarden, Alexander
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices(1,2). This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively(3)) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects(4). Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance(5), perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance(6). The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions(7) and with local strain(8), both of which make devices less stable(9). Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process(10,11), we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.