GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Hydrothermal (NN)-N-15-N-15 abundances constrain the origins of mantle nitrogen 期刊论文
NATURE, 2020, 580 (7803) : 367-+
作者:  Zhao, Steven;  Jang, Cholsoon;  Liu, Joyce;  Uehara, Kahealani;  Gilbert, Michael;  Izzo, Luke;  Zeng, Xianfeng;  Trefely, Sophie;  Fernandez, Sully;  Carrer, Alessandro;  Miller, Katelyn D.;  Schug, Zachary T.;  Snyder, Nathaniel W.;  Gade, Terence P.;  Titchenell, Paul M.;  Rabinowitz, Joshua D.;  Wellen, Kathryn E.
收藏  |  浏览/下载:34/0  |  提交时间:2020/05/13

Nitrogen is the main constituent of the Earth'  s atmosphere, but its provenance in the Earth'  s mantle remains uncertain. The relative contribution of primordial nitrogen inherited during the Earth'  s accretion versus that subducted from the Earth'  s surface is unclear(1-6). Here we show that the mantle may have retained remnants of such primordial nitrogen. We use the rare (NN)-N-15-N-15 isotopologue of N-2 as a new tracer of air contamination in volcanic gas effusions. By constraining air contamination in gases from Iceland, Eifel (Germany) and Yellowstone (USA), we derive estimates of mantle delta N-15 (the fractional difference in N-15/N-14 from air), N-2/Ar-36 and N-2/He-3. Our results show that negative delta N-15 values observed in gases, previously regarded as indicating a mantle origin for nitrogen(7-10), in fact represent dominantly air-derived N-2 that experienced N-15/N-14 fractionation in hydrothermal systems. Using two-component mixing models to correct for this effect, the (NN)-N-15-N-15 data allow extrapolations that characterize mantle endmember delta N-15, N-2/Ar-36 and N-2/He-3 values. We show that the Eifel region has slightly increased delta N-15 and N-2/Ar-36 values relative to estimates for the convective mantle provided by mid-ocean-ridge basalts(11), consistent with subducted nitrogen being added to the mantle source. In contrast, we find that whereas the Yellowstone plume has delta N-15 values substantially greater than that of the convective mantle, resembling surface components(12-15), its N-2/Ar-36 and N-2/He-3 ratios are indistinguishable from those of the convective mantle. This observation raises the possibility that the plume hosts a primordial component. We provide a test of the subduction hypothesis with a two-box model, describing the evolution of mantle and surface nitrogen through geological time. We show that the effect of subduction on the deep nitrogen cycle may be less important than has been suggested by previous investigations. We propose instead that high mid-ocean-ridge basalt and plume delta N-15 values may both be dominantly primordial features.


  
Investigation of the fine structure of antihydrogen 期刊论文
NATURE, 2020, 578 (7795) : 375-+
作者:  Zhang, Bing;  Ma, Sai;  Rachmin, Inbal;  He, Megan;  Baral, Pankaj;  Choi, Sekyu;  Goncalves, William A.;  Shwartz, Yulia;  Fast, Eva M.;  Su, Yiqun;  Zon, Leonard I.;  Regev, Aviv;  Buenrostro, Jason D.;  Cunha, Thiago M.;  Chiu, Isaac M.;  Fisher, David E.;  Hsu, Ya-Chieh
收藏  |  浏览/下载:57/0  |  提交时间:2020/07/03

At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fine structure of atomic hydrogen: a separation of the 2S(1/2) and 2P(1/2) states(1). The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics(2-5). Quantum electrodynamics also describes antimatter, but it has only recently become possible to synthesize and trap atomic antimatter to probe its structure. Mirroring the historical development of quantum atomic physics in the twentieth century, modern measurements on anti-atoms represent a unique approach for testing quantum electrodynamics and the foundational symmetries of the standard model. Here we report measurements of the fine structure in the n = 2 states of antihydrogen, the antimatter counterpart of the hydrogen atom. Using optical excitation of the 1S-2P Lyman-alpha transitions in antihydrogen(6), we determine their frequencies in a magnetic field of 1 tesla to a precision of 16 parts per billion. Assuming the standard Zeeman and hyperfine interactions, we infer the zero-field fine-structure splitting (2P(1/2)-2P(3/2)) in antihydrogen. The resulting value is consistent with the predictions of quantum electrodynamics to a precision of 2 per cent. Using our previously measured value of the 1S-2S transition frequency(6,7), we find that the classic Lamb shift in antihydrogen (2S(1/2)-2P(1/2) splitting at zero field) is consistent with theory at a level of 11 per cent. Our observations represent an important step towards precision measurements of the fine structure and the Lamb shift in the antihydrogen spectrum as tests of the charge-parity-time symmetry(8) and towards the determination of other fundamental quantities, such as the antiproton charge radius(9,10), in this antimatter system.


Precision measurements of the 1S-2P transition in antihydrogen that take into account the standard Zeeman and hyperfine effects confirm the predictions of quantum electrodynamics.


  
Time of observation adjustments to daily station precipitation may introduce undesired statistical issues 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38: E364-E377
作者:  Oyler, Jared W.;  Nicholas, Robert E.
收藏  |  浏览/下载:8/0  |  提交时间:2019/04/09
time of observation  precipitation observations  extremes  GHCN-D  NLDAS-2