GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Transparent ferroelectric crystals with ultrahigh piezoelectricity 期刊论文
NATURE, 2020, 577 (7790) : 350-+
作者:  Qiu, Chaorui;  Wang, Bo;  Zhang, Nan;  Zhang, Shujun;  Liu, Jinfeng;  Walker, David;  Wang, Yu;  Tian, Hao;  Shrout, Thomas R.;  Xu, Zhuo;  Chen, Long-Qing;  Li, Fei
收藏  |  浏览/下载:43/0  |  提交时间:2020/07/03

Transparent piezoelectrics are highly desirable for numerous hybrid ultrasound-optical devices ranging from photoacoustic imaging transducers to transparent actuators for haptic applications(1-7). However, it is challenging to achieve high piezoelectricity and perfect transparency simultaneously because most high-performance piezoelectrics are ferroelectrics that contain high-density light-scattering domain walls. Here, through a combination of phase-field simulations and experiments, we demonstrate a relatively simple method of using an alternating-current electric field to engineer the domain structures of originally opaque rhombohedral Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) crystals to simultaneously generate near-perfect transparency, an ultrahigh piezoelectric coefficient d(33) (greater than 2,100 picocoulombs per newton), an excellent electromechanical coupling factor k(33) (about 94 per cent) and a large electro-optical coefficient gamma(33) (approximately 220 picometres per volt), which is far beyond the performance of the commonly used transparent ferroelectric crystal LiNbO3. We find that increasing the domain size leads to a higher d(33) value for the [001]-oriented rhombohedral PMN-PT crystals, challenging the conventional wisdom that decreasing the domain size always results in higher piezoelectricity(8-10). This work presents a paradigm for achieving high transparency and piezoelectricity by ferroelectric domain engineering, and we expect the transparent ferroelectric crystals reported here to provide a route to a wide range of hybrid device applications, such as medical imaging, self-energy-harvesting touch screens and invisible robotic devices.


  
AI tracks a beating heart's function over time 期刊论文
NATURE, 2020, 580 (7802)
作者:  Ball, Philip
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Clinicians use ultrasound videos of heartbeats to assess subtle changes in the heart'  s pumping function. A method that uses artificial intelligence might simplify these complex assessments when heartbeats are out of rhythm.


  
Gassmann Theory Applies to Nanoporous Media 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (1) : 146-155
作者:  Gor, Gennady Y.;  Gurevich, Boris
收藏  |  浏览/下载:7/0  |  提交时间:2019/04/09
ultrasound  Gassmann equation  nanopores  confined fluid  
Novel techniques for image quality enhancement in ultrasound imaging tomography 科技报告
来源:US Department of Energy (DOE). 出版年: 2015
作者:  Shin, Jun Seob
收藏  |  浏览/下载:13/0  |  提交时间:2019/04/05
biological science  mathematics  ultrasound imaging