GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Decoy exosomes provide protection against bacterial toxins 期刊论文
NATURE, 2020, 579 (7798) : 260-+
作者:  Park, Jin Suk;  Burckhardt, Christoph J.;  Lazcano, Rossana;  Solis, Luisa M.;  Isogai, Tadamoto;  Li, Linqing;  Chen, Christopher S.;  Gao, Boning;  Minna, John D.;  Bachoo, Robert;  DeBerardinis, Ralph J.;  Danuser, Gaudenz
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

The production of pore-forming toxins that disrupt the plasma membrane of host cells is a common virulence strategy for bacterial pathogens such as methicillin-resistant Staphylococcus aureus (MRSA)(1-3). It is unclear, however, whether host species possess innate immune mechanisms that can neutralize pore-forming toxins during infection. We previously showed that the autophagy protein ATG16L1 is necessary for protection against MRSA strains encoding alpha-toxin(4)-a pore-forming toxin that binds the metalloprotease ADAM10 on the surface of a broad range of target cells and tissues(2,5,6). Autophagy typically involves the targeting of cytosolic material to the lysosome for degradation. Here we demonstrate that ATG16L1 and other ATG proteins mediate protection against alpha-toxin through the release of ADAM10 on exosomes-extracellular vesicles of endosomal origin. Bacterial DNA and CpG DNA induce the secretion of ADAM10-bearing exosomes from human cells as well as in mice. Transferred exosomes protect host cells in vitro by serving as scavengers that can bind multiple toxins, and improve the survival of mice infected with MRSA in vivo. These findings indicate that ATG proteins mediate a previously unknown form of defence in response to infection, facilitating the release of exosomes that serve as decoys for bacterially produced toxins.


  
Host-mediated ubiquitination of a mycobacterial protein suppresses immunity 期刊论文
NATURE, 2020, 577 (7792) : 682-+
作者:  Nahas, Y.;  Prokhorenko, S.;  Fischer, J.;  Xu, B.;  Carretero, C.;  Prosandeev, S.;  Bibes, M.;  Fusil, S.;  Dkhil, B.;  Garcia, V.;  Bellaiche, L.
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Mycobacterium tuberculosis suppresses the production of inflammatory cytokines by host cells through the host-mediated ubiquitination of a mycobacterial protein, enhancing the interaction of a host signalling inhibitor with another signalling molecule.


Mycobacterium tuberculosis is an intracellular pathogen that uses several strategies to interfere with the signalling functions of host immune molecules. Many other bacterial pathogens exploit the host ubiquitination system to promote pathogenesis(1,2), but whether this same system modulates the ubiquitination of M. tuberculosis proteins is unknown. Here we report that the host E3 ubiquitin ligase ANAPC2-a core subunit of the anaphase-promoting complex/cyclosome-interacts with the mycobacterial protein Rv0222 and promotes the attachment of lysine-11-linked ubiquitin chains to lysine 76 of Rv0222 in order to suppress the expression of proinflammatory cytokines. Inhibition of ANAPC2 by specific short hairpin RNA abolishes the inhibitory effect of Rv0222 on proinflammatory responses. Moreover, mutation of the ubiquitination site on Rv0222 impairs the inhibition of proinflammatory cytokines by Rv0222 and reduces virulence during infection in mice. Mechanistically, lysine-11-linked ubiquitination of Rv0222 by ANAPC2 facilitates the recruitment of the protein tyrosine phosphatase SHP1 to the adaptor protein TRAF6, preventing the lysine-63-linked ubiquitination and activation of TRAF6. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


  
On the relationship between body condition and parasite infection in wildlife: a review and meta-analysis 期刊论文
ECOLOGY LETTERS, 2018, 21 (12) : 1869-1884
作者:  Sanchez, Cecilia A.;  Becker, Daniel J.;  Teitelbaum, Claire S.;  Barriga, Paola;  Brown, Leone M.;  Majewska, Ania A.;  Hall, Richard J.;  Altizer, Sonia
收藏  |  浏览/下载:17/0  |  提交时间:2019/04/09
Fitness  host-parasite interaction  infectious disease ecology  phylogenetic meta-analysis  publication bias  susceptibility  virulence