GSTDTAP

浏览/检索结果: 共14条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Production Flux and Chemical Characteristics of Spray Aerosol Generated From Raindrop Impact on Seawater and Soil 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (13)
作者:  Zhou, Kaili;  Wang, Shurong;  Lu, Xiaohui;  Chen, Hong;  Wang, Lin;  Chen, Jianmin;  Yang, Xin;  Wang, Xiaofei
收藏  |  浏览/下载:14/0  |  提交时间:2020/08/18
spray aerosol  aerosol flux  raindrop impact  
Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling 期刊论文
NATURE GEOSCIENCE, 2020, 13 (6) : 441-+
作者:  Su, Jianzhong;  Cai, Wei-Jun;  Brodeur, Jean;  Chen, Baoshan;  Hussain, Najid;  Yao, Yichen;  Ni, Chaoying;  Testa, Jeremy M.;  Li, Ming;  Xie, Xiaohui;  Ni, Wenfei;  Scaboo, K. Michael;  Xu, Yuan-yuan;  Cornwell, Jeffrey;  Gurbisz, Cassie;  Owens, Michael S.;  Waldbusser, George G.;  Dai, Minhan;  Kemp, W. Michael
收藏  |  浏览/下载:10/0  |  提交时间:2020/06/09
A GPR174-CCL21 module imparts sexual dimorphism to humoral immunity 期刊论文
NATURE, 2020, 577 (7790) : 416-+
作者:  Morley, Jessica;  Cowls, Josh;  Taddeo, Mariarosaria;  Floridi, Luciano
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Humoral immune responses to immunization and infection and susceptibilities to antibody-mediated autoimmunity are generally lower in males(1-3). However, the mechanisms underlying such sexual dimorphism are not well understood. Here we show that there are intrinsic differences between the B cells that produce germinal centres in male and female mice. We find that antigen-activated male B cells do not position themselves as efficiently as female B cells in the centre of follicles in secondary lymphoid organs, in which germinal centres normally develop. Moreover, GPR174-an X-chromosome-encoded G-protein-coupled receptor-suppresses the formation of germinal centres in male, but not female, mice. This effect is intrinsic to B cells, and correlates with the GPR174-enhanced positioning of B cells towards the T-cell-B-cell border of follicles, and the distraction of male, but not female, B cells from S1PR2-driven follicle-centre localization. Biochemical fractionation of conditioned media that induce B-cell migration in a GPR174-dependent manner identifies CCL21 as a GPR174 ligand. In response to CCL21, GPR174 triggers a calcium flux and preferentially induces the migration of male B cells  GPR174 also becomes associated with more G alpha i protein in male than in female B cells. Male B cells from orchidectomized mice exhibit impaired GPR174-mediated migration to CCL21, and testosterone treatment rescues this defect. Female B cells from testosterone-treated mice exhibit male-like GPR174-G alpha i association and GPR174-mediated migration. Deleting GPR174 from male B cells causes more efficient positioning towards the follicular centre, the formation of more germinal centres and an increased susceptibility to B-cell-dependent experimental autoimmune encephalomyelitis. By identifying GPR174 as a receptor for CCL21 and demonstrating its sex-dependent control of B-cell positioning and participation in germinal centres, we have revealed a mechanism by which B-cell physiology is fine-tuned to impart sexual dimorphism to humoral immunity.


  
Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex 期刊论文
NATURE, 2020
作者:  Kalaany, Nada Y.;  Sabatini, David M.
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Mitochondria take up Ca2+ through the mitochondrial calcium uniporter complex to regulate energy production, cytosolic Ca2+ signalling and cell death(1,2). In mammals, the uniporter complex (uniplex) contains four core components: the pore-forming MCU protein, the gatekeepers MICU1 and MICU2, and an auxiliary subunit, EMRE, essential for Ca2+ transport(3-8). To prevent detrimental Ca2+ overload, the activity of MCU must be tightly regulated by MICUs, which sense changes in cytosolic Ca2+ concentrations to switch MCU on and off(9,10). Here we report cryo-electron microscopic structures of the human mitochondrial calcium uniporter holocomplex in inhibited and Ca2+-activated states. These structures define the architecture of this multicomponent Ca2+-uptake machinery and reveal the gating mechanism by which MICUs control uniporter activity. Our work provides a framework for understanding regulated Ca2+ uptake in mitochondria, and could suggest ways of modulating uniporter activity to treat diseases related to mitochondrial Ca2+ overload.


Cryo-electron microscopy reveals the structures of the mitochondrial calcium uniporter holocomplex in low- and high-calcium conditions, showing the gating mechanism that underlies uniporter activation in response to intracellular calcium signals.


  
A calcineurin-Hoxb13 axis regulates growth mode of mammalian cardiomyocytes 期刊论文
NATURE, 2020, 582 (7811) : 271-+
作者:  Waszak, Sebastian M.;  Robinson, Giles W.;  Gudenas, Brian L.;  Smith, Kyle S.;  Forget, Antoine;  Kojic, Marija;  Garcia-Lopez, Jesus;  Hadley, Jennifer;  Hamilton, Kayla V.;  Indersie, Emilie;  Buchhalter, Ivo;  Kerssemakers, Jules;  Jaeger, Natalie;  Sharma, Tanvi;  Rausch, Tobias
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Hoxb13 acts as a cofactor of Meis1 in regulating cardiomyocyte maturation and cell cycle, and knockout of both proteins enables regeneration of postnatal cardiac tissue in a mouse model of heart injury.


A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes(1,2) and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest(3). Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.


  
Supply of phosphate to early Earth by photogeochemistry after meteoritic weathering 期刊论文
NATURE GEOSCIENCE, 2020, 13 (5)
作者:  Ritson, Dougal J.;  Mojzsis, Stephen J.;  Sutherland, John. D.
收藏  |  浏览/下载:6/0  |  提交时间:2020/05/13
New Lidar Observations of Ca+ in the Mesosphere and Lower Thermosphere Over Arecibo 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (5)
作者:  Raizada, Shikha;  Smith, J. A.;  Lautenbach, J.;  Aponte, N.;  Perillat, P.;  Sulzer, M.;  Mathews, J. D.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
Olfactory receptor and circuit evolution promote host specialization 期刊论文
NATURE, 2020
作者:  Chen, Tse-An;  Chuu, Chih-Piao;  Tseng, Chien-Chih;  Wen, Chao-Kai;  Wong, H. -S. Philip;  Pan, Shuangyuan;  Li, Rongtan;  Chao, Tzu-Ang;  Chueh, Wei-Chen;  Zhang, Yanfeng;  Fu, Qiang;  Yakobson, Boris I.;  Chang, Wen-Hao;  Li, Lain-Jong
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

The evolution of animal behaviour is poorly understood(1,2). Despite numerous correlations between interspecific divergence in behaviour and nervous system structure and function, demonstrations of the genetic basis of these behavioural differences remain rare(3-5). Here we develop a neurogenetic model, Drosophila sechellia, a species that displays marked differences in behaviour compared to its close cousin Drosophila melanogaster(6,7), which are linked to its extreme specialization on noni fruit (Morinda citrifolia)(8-16). Using calcium imaging, we identify olfactory pathways in D. sechellia that detect volatiles emitted by the noni host. Our mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni, and our cross-species allele-transfer experiments demonstrate that the tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterize their evolutionary origin and behavioural importance. We perform circuit tracing in the D. sechellia brain, and find that receptor adaptations are accompanied by increased sensory pooling onto interneurons as well as species-specific central projection patterns. This work reveals an accumulation of molecular, physiological and anatomical traits that are linked to behavioural divergence between species, and defines a model for investigating speciation and the evolution of the nervous system.


A neurogenetic model, Drosophila sechellia-a relative of Drosophila melanogaster that has developed an extreme specialization for a single host plant-sheds light on the evolution of interspecific differences in behaviour.


  
Ball-and-chain inactivation in a calcium-gated potassium channel 期刊论文
NATURE, 2020, 580 (7802) : 288-+
作者:  Peron, Simon;  Pancholi, Ravi;  Voelcker, Bettina;  Wittenbach, Jason D.;  olafsdottir, H. Freyja;  Freeman, Jeremy;  Svoboda, Karel
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Cryo-electron microscopy structures and molecular dynamics simulations of the calcium-activated potassium channel MthK from Methanobacterium thermoautotrophicum are used to show that gating of this channel involves a ball-and-chain inactivation mechanism mediated by a previously unresolved N-terminal peptide.


Inactivation is the process by which ion channels terminate ion flux through their pores while the opening stimulus is still present(1). In neurons, inactivation of both sodium and potassium channels is crucial for the generation of action potentials and regulation of firing frequency(1,2). A cytoplasmic domain of either the channel or an accessory subunit is thought to plug the open pore to inactivate the channel via a '  ball-and-chain'  mechanism(3-7). Here we use cryo-electron microscopy to identify the molecular gating mechanism in calcium-activated potassium channels by obtaining structures of the MthK channel from Methanobacterium thermoautotrophicum-a purely calcium-gated and inactivating channel-in a lipid environment. In the absence of Ca2+, we obtained a single structure in a closed state, which was shown by atomistic simulations to be highly flexible in lipid bilayers at ambient temperature, with large rocking motions of the gating ring and bending of pore-lining helices. In Ca2+-bound conditions, we obtained several structures, including multiple open-inactivated conformations, further indication of a highly dynamic protein. These different channel conformations are distinguished by rocking of the gating rings with respect to the transmembrane region, indicating symmetry breakage across the channel. Furthermore, in all conformations displaying open channel pores, the N terminus of one subunit of the channel tetramer sticks into the pore and plugs it, with free energy simulations showing that this is a strong interaction. Deletion of this N terminus leads to functionally non-inactivating channels and structures of open states without a pore plug, indicating that this previously unresolved N-terminal peptide is responsible for a ball-and-chain inactivation mechanism.


  
The Enigma of Neoproterozoic Giant Ooids-Fingerprints of Extreme Climate? 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (4)
作者:  Trower, Elizabeth J.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02