GSTDTAP  > 地球科学
DOI10.1016/j.atmosres.2017.01.002
Application of recurrent neural networks for drought projections in California
Le, J. A.1; El-Askary, H. M.1,2,3; Allali, M.1; Struppa, D. C.1
2017-05-15
发表期刊ATMOSPHERIC RESEARCH
ISSN0169-8095
EISSN1873-2895
出版年2017
卷号188
文章类型Article
语种英语
国家USA; Egypt
英文摘要

We use recurrent neural networks (RNNs) to investigate the complex interactions between the long-term trend in dryness and a projected, short but intense, period of wetness due to the 2015-2016 El Nino. Although it was forecasted that this El Nino season would bring significant rainfall to the region, our long-term projections of the Palmer Z Index (PZI) showed a continuing drought trend, contrasting with the 1998-1999 El Nino event. RNN training considered PZI data during 1896-2006 that was validated against the 2006-2015 period to evaluate the potential of extreme precipitation forecast. We achieved a statistically significant correlation of 0.610 between forecasted and observed PZI on the validation set for a lead time of 1 month. This gives strong confidence to the forecasted precipitation indicator. The 2015-2016 El Nino season proved to be relatively weak as compared with the 1997-1998, with a peak PZI anomaly of 0.242 standard deviations below historical averages, continuing drought conditions. (C) 2017 Elsevier B.V. All rights reserved.


英文关键词Drought Southern California El Nino Palmer Z-Index Recurrent neural networks
领域地球科学
收录类别SCI-E
WOS记录号WOS:000395609200011
WOS关键词TIME-SERIES ; PRECIPITATION ; PREDICTION ; STREAMFLOW ; PATTERNS ; WEATHER ; ATHENS
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/15167
专题地球科学
作者单位1.Chapman Univ, Schmid Coll Sci & Technol, Orange, CA 92866 USA;
2.Chapman Univ, Ctr Excellence Earth Syst Modeling & Observat, Orange, CA 92866 USA;
3.Univ Alexandria, Fac Sci, Dept Environm Sci, Alexandria, Egypt
推荐引用方式
GB/T 7714
Le, J. A.,El-Askary, H. M.,Allali, M.,et al. Application of recurrent neural networks for drought projections in California[J]. ATMOSPHERIC RESEARCH,2017,188.
APA Le, J. A.,El-Askary, H. M.,Allali, M.,&Struppa, D. C..(2017).Application of recurrent neural networks for drought projections in California.ATMOSPHERIC RESEARCH,188.
MLA Le, J. A.,et al."Application of recurrent neural networks for drought projections in California".ATMOSPHERIC RESEARCH 188(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Le, J. A.]的文章
[El-Askary, H. M.]的文章
[Allali, M.]的文章
百度学术
百度学术中相似的文章
[Le, J. A.]的文章
[El-Askary, H. M.]的文章
[Allali, M.]的文章
必应学术
必应学术中相似的文章
[Le, J. A.]的文章
[El-Askary, H. M.]的文章
[Allali, M.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。