Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1016/j.atmosres.2017.01.002 |
Application of recurrent neural networks for drought projections in California | |
Le, J. A.1; El-Askary, H. M.1,2,3; Allali, M.1; Struppa, D. C.1 | |
2017-05-15 | |
发表期刊 | ATMOSPHERIC RESEARCH
![]() |
ISSN | 0169-8095 |
EISSN | 1873-2895 |
出版年 | 2017 |
卷号 | 188 |
文章类型 | Article |
语种 | 英语 |
国家 | USA; Egypt |
英文摘要 | We use recurrent neural networks (RNNs) to investigate the complex interactions between the long-term trend in dryness and a projected, short but intense, period of wetness due to the 2015-2016 El Nino. Although it was forecasted that this El Nino season would bring significant rainfall to the region, our long-term projections of the Palmer Z Index (PZI) showed a continuing drought trend, contrasting with the 1998-1999 El Nino event. RNN training considered PZI data during 1896-2006 that was validated against the 2006-2015 period to evaluate the potential of extreme precipitation forecast. We achieved a statistically significant correlation of 0.610 between forecasted and observed PZI on the validation set for a lead time of 1 month. This gives strong confidence to the forecasted precipitation indicator. The 2015-2016 El Nino season proved to be relatively weak as compared with the 1997-1998, with a peak PZI anomaly of 0.242 standard deviations below historical averages, continuing drought conditions. (C) 2017 Elsevier B.V. All rights reserved. |
英文关键词 | Drought Southern California El Nino Palmer Z-Index Recurrent neural networks |
领域 | 地球科学 |
收录类别 | SCI-E |
WOS记录号 | WOS:000395609200011 |
WOS关键词 | TIME-SERIES ; PRECIPITATION ; PREDICTION ; STREAMFLOW ; PATTERNS ; WEATHER ; ATHENS |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS研究方向 | Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/15167 |
专题 | 地球科学 |
作者单位 | 1.Chapman Univ, Schmid Coll Sci & Technol, Orange, CA 92866 USA; 2.Chapman Univ, Ctr Excellence Earth Syst Modeling & Observat, Orange, CA 92866 USA; 3.Univ Alexandria, Fac Sci, Dept Environm Sci, Alexandria, Egypt |
推荐引用方式 GB/T 7714 | Le, J. A.,El-Askary, H. M.,Allali, M.,et al. Application of recurrent neural networks for drought projections in California[J]. ATMOSPHERIC RESEARCH,2017,188. |
APA | Le, J. A.,El-Askary, H. M.,Allali, M.,&Struppa, D. C..(2017).Application of recurrent neural networks for drought projections in California.ATMOSPHERIC RESEARCH,188. |
MLA | Le, J. A.,et al."Application of recurrent neural networks for drought projections in California".ATMOSPHERIC RESEARCH 188(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论