Global S&T Development Trend Analysis Platform of Resources and Environment
| DOI | 10.1029/2018GL081251 |
| Machine Learning Can Predict the Timing and Size of Analog Earthquakes | |
| Corbi, F.1; Sandri, L.2; Bedford, J.3; Funiciello, F.1; Brizzi, S.1,4; Rosenau, M.3; Lallemand, S.5 | |
| 2019-02-16 | |
| 发表期刊 | GEOPHYSICAL RESEARCH LETTERS
![]() |
| ISSN | 0094-8276 |
| EISSN | 1944-8007 |
| 出版年 | 2019 |
| 卷号 | 46期号:3页码:1303-1311 |
| 文章类型 | Article |
| 语种 | 英语 |
| 国家 | Italy; Germany; France |
| 英文摘要 | Despite the growing spatiotemporal density of geophysical observations at subduction zones, predicting the timing and size of future earthquakes remains a challenge. Here we simulate multiple seismic cycles in a laboratory-scale subduction zone. The model creates both partial and full margin ruptures, simulating magnitude M-w 6.2-8.3 earthquakes with a coefficient of variation in recurrence intervals of 0.5, similar to real subduction zones. We show that the common procedure of estimating the next earthquake size from slip-deficit is unreliable. On the contrary, machine learning predicts well the timing and size of laboratory earthquakes by reconstructing and properly interpreting the spatiotemporally complex loading history of the system. These results promise substantial progress in real earthquake forecasting, as they suggest that the complex motion recorded by geodesists at subduction zones might be diagnostic of earthquake imminence. |
| 领域 | 气候变化 |
| 收录类别 | SCI-E |
| WOS记录号 | WOS:000462072800021 |
| WOS关键词 | SUBDUCTION ; CHILE ; SLIP ; MEGATHRUST ; PATTERNS ; FRICTION ; LOCKING |
| WOS类目 | Geosciences, Multidisciplinary |
| WOS研究方向 | Geology |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/181347 |
| 专题 | 气候变化 |
| 作者单位 | 1.Univ Roma TRE, Lab Expt Tecton, Dip Sci, Rome, Italy; 2.Ist Nazl Geofis & Vulcanol, Sez Bologna, Bologna, Italy; 3.Helmholtz Ctr Potsdam, GFZ German Res Ctr Geosci, Potsdam, Germany; 4.Univ Parma, Dip SCVSA, Nat & Expt Tecton Res Grp, Parma, Italy; 5.Univ Montpellier, CNRS, Geosci Montpellier, Montpellier, France |
| 推荐引用方式 GB/T 7714 | Corbi, F.,Sandri, L.,Bedford, J.,et al. Machine Learning Can Predict the Timing and Size of Analog Earthquakes[J]. GEOPHYSICAL RESEARCH LETTERS,2019,46(3):1303-1311. |
| APA | Corbi, F..,Sandri, L..,Bedford, J..,Funiciello, F..,Brizzi, S..,...&Lallemand, S..(2019).Machine Learning Can Predict the Timing and Size of Analog Earthquakes.GEOPHYSICAL RESEARCH LETTERS,46(3),1303-1311. |
| MLA | Corbi, F.,et al."Machine Learning Can Predict the Timing and Size of Analog Earthquakes".GEOPHYSICAL RESEARCH LETTERS 46.3(2019):1303-1311. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论