Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1029/2018GL081119 |
Deep Learning Models Augment Analyst Decisions for Event Discrimination | |
Linville, Lisa1; Pankow, Kristine1; Draelos, Timothy2 | |
2019-04-16 | |
发表期刊 | GEOPHYSICAL RESEARCH LETTERS
![]() |
ISSN | 0094-8276 |
EISSN | 1944-8007 |
出版年 | 2019 |
卷号 | 46期号:7页码:3643-3651 |
文章类型 | Article |
语种 | 英语 |
国家 | USA |
英文摘要 | Long-term seismic monitoring networks are well positioned to leverage advances in machine learning because of the abundance of labeled training data that curated event catalogs provide. We explore the use of convolutional and recurrent neural networks to accomplish discrimination of explosive and tectonic sources for local distances. Using a 5-year event catalog generated by the University of Utah Seismograph Stations, we train models to produce automated event labels using 90-s event spectrograms from three-component and single-channel sensors. Both network architectures are able to replicate analyst labels above 98%. Most commonly, model error is the result of label error (70% of cases). Accounting for mislabeled events (similar to 1% of the catalog) model accuracy for both models increases to above 99%. Classification accuracy remains above 98% for shallow tectonic events, indicating that spectral characteristics controlled by event depth do not play a dominant role in event discrimination. |
英文关键词 | Utah event classification event discrimination deep learning convolutional neural network recurrent neural network |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000465836200009 |
WOS关键词 | NEURAL-NETWORKS ; EARTHQUAKES ; ARRAY |
WOS类目 | Geosciences, Multidisciplinary |
WOS研究方向 | Geology |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/182357 |
专题 | 气候变化 |
作者单位 | 1.Univ Utah, Univ Utah Seismograph Stn, Salt Lake City, UT 84112 USA; 2.Sandia Natl Labs, Geophys Dept, POB 5800, Albuquerque, NM 87185 USA |
推荐引用方式 GB/T 7714 | Linville, Lisa,Pankow, Kristine,Draelos, Timothy. Deep Learning Models Augment Analyst Decisions for Event Discrimination[J]. GEOPHYSICAL RESEARCH LETTERS,2019,46(7):3643-3651. |
APA | Linville, Lisa,Pankow, Kristine,&Draelos, Timothy.(2019).Deep Learning Models Augment Analyst Decisions for Event Discrimination.GEOPHYSICAL RESEARCH LETTERS,46(7),3643-3651. |
MLA | Linville, Lisa,et al."Deep Learning Models Augment Analyst Decisions for Event Discrimination".GEOPHYSICAL RESEARCH LETTERS 46.7(2019):3643-3651. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论