GSTDTAP  > 地球科学
DOI10.5194/acp-19-7151-2019
Implication of strongly increased atmospheric methane concentrations for chemistry-climate connections
Winterstein, Franziska1; Tanalski, Fabian1,2; Joeckel, Patrick1; Dameris, Martin1; Ponater, Michael1
2019-05-29
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2019
卷号19期号:10页码:7151-7163
文章类型Article
语种英语
国家Germany
英文摘要

Methane (CH4) is the second-most important directly emitted greenhouse gas, the atmospheric concentration of which is influenced by human activities. In this study, numerical simulations with the chemistry-climate model (CCM) EMAC are performed, aiming to assess possible consequences of significantly enhanced CH4 concentrations in the Earth's atmosphere for the climate.


We analyse experiments with 2 x CH4 and 5 x CH4 present-day (2010) mixing ratio and its quasi-instantaneous chemical impact on the atmosphere. The massive increase in CH4 strongly influences the tropospheric chemistry by reducing the OH abundance and thereby extending the CH4 lifetime as well as the residence time of other chemical substances. The region above the tropopause is impacted by a substantial rise in stratospheric water vapour (SWV). The stratospheric ozone (O-3) column increases overall, but SWV-induced stratospheric cooling also leads to a enhanced ozone depletion in the Antarctic lower stratosphere. Regional patterns of ozone change are affected by modification of stratospheric dynamics, i.e. increased tropical upwelling and stronger meridional transport towards the polar regions. We calculate the net radiative impact (RI) of the 2 x CH4 experiment to be 0.69 W m(-2), and for the 5 x CH4 experiment to be 1.79 W m(-2). A substantial part of the RH is contributed by chemically induced O-3 and SWV changes, in line with previous radiative forcing estimates.


To our knowledge this is the first numerical study using a CCM with respect to 2- and 5-fold CH4 concentrations and it is therefore an overdue analysis as it emphasizes the impact of possible strong future CH4 emissions on atmospheric chemistry and its feedback on climate.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000469430600002
WOS关键词GENERAL-CIRCULATION MODEL ; SUBMODEL SYSTEM MESSY ; OZONE ; EMISSIONS ; FEEDBACK ; WETLAND ; CO2 ; ATTRIBUTION ; PROJECTIONS ; SIMULATION
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/183433
专题地球科学
作者单位1.Deutsch Zentrum Luft & Raumfahrt DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany;
2.MERPH IP Patentanwalte PartG mbB, Munich, Germany
推荐引用方式
GB/T 7714
Winterstein, Franziska,Tanalski, Fabian,Joeckel, Patrick,et al. Implication of strongly increased atmospheric methane concentrations for chemistry-climate connections[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2019,19(10):7151-7163.
APA Winterstein, Franziska,Tanalski, Fabian,Joeckel, Patrick,Dameris, Martin,&Ponater, Michael.(2019).Implication of strongly increased atmospheric methane concentrations for chemistry-climate connections.ATMOSPHERIC CHEMISTRY AND PHYSICS,19(10),7151-7163.
MLA Winterstein, Franziska,et al."Implication of strongly increased atmospheric methane concentrations for chemistry-climate connections".ATMOSPHERIC CHEMISTRY AND PHYSICS 19.10(2019):7151-7163.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Winterstein, Franziska]的文章
[Tanalski, Fabian]的文章
[Joeckel, Patrick]的文章
百度学术
百度学术中相似的文章
[Winterstein, Franziska]的文章
[Tanalski, Fabian]的文章
[Joeckel, Patrick]的文章
必应学术
必应学术中相似的文章
[Winterstein, Franziska]的文章
[Tanalski, Fabian]的文章
[Joeckel, Patrick]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。