GSTDTAP  > 气候变化
DOI10.1088/1748-9326/ab18df
Statistical properties of hybrid estimators proposed for GEDI-NASA's global ecosystem dynamics investigation
Patterson, Paul L.1; Healey, Sean P.2; Stahl, Goran3; Saarela, Svetlana3; Holm, Soren3; Andersen, Hans-Erik4; Dubayah, Ralph O.5,6; Duncanson, Laura5; Hancock, Steven5; Armstod, John5; Kellner, James R.6,7; Cohen, Warren B.8; Yang, Zhiqiang2
2019-06-01
发表期刊ENVIRONMENTAL RESEARCH LETTERS
ISSN1748-9326
出版年2019
卷号14期号:6
文章类型Article
语种英语
国家USA; Sweden
英文摘要

NASA's Global Ecosystem Dynamics Investigation (GEDI) mission will collect waveform lidar data at a dense sample of similar to 25 m footprints along ground tracks paralleling the orbit of the International Space Station (ISS). GEDI's primary science deliverable will be a 1 km grid of estimated mean aboveground biomass density (Mg ha(-1)), covering the latitudes overflown by ISS (51.6 degrees S to 51.6 degrees N). One option for using the sample of waveforms contained within an individual grid cell to produce an estimate for that cell is hybrid inference, which explicitly incorporates both sampling design and model parameter covariance into estimates of variance around the population mean. We explored statistical properties of hybrid estimators applied in the context of GEDI, using simulations calibrated with lidar and field data from six diverse sites across the United States. We found hybrid estimators of mean biomass to be unbiased and the corresponding estimators of variance appeared to be asymptotically unbiased, with under-estimation of variance by approximately 20% when data from only two clusters (footprint tracks) were available. In our study areas, sampling error contributed more to overall estimates of variance than variability due to the model, and it was the design-based component of the variance that was the source of the variance estimator bias at small sample sizes. These results highlight the importance of maximizing GEDI's sample size in making precise biomass estimates. Given a set of assumptions discussed here, hybrid inference provides a viable framework for estimating biomass at the scale of a 1 km grid cell while formally accounting for both variability due to the model and sampling error.


英文关键词carbon monitoring lidar forest biomass
领域气候变化
收录类别SCI-E
WOS记录号WOS:000471651700002
WOS关键词MODEL-BASED INFERENCE ; ABOVEGROUND BIOMASS ; FOREST ; AIRBORNE
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/183743
专题气候变化
作者单位1.US Forest Serv, USDA, Rocky Mt Res Stn, 240W Prospect, Ft Collins, CO 80526 USA;
2.US Forest Serv, USDA, Rocky Mt Res St, 507 25th St, Ogden, UT 84401 USA;
3.Swedish Univ Agr Sci, Dept Forest Resource Management, Umea, Sweden;
4.US Forest Serv, USDA, Pacific Northwest Res Stn, Seattle, WA USA;
5.Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA;
6.Brown Univ, Inst Brown Environm & Soc, Providence, RI 02912 USA;
7.Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA;
8.US Forest Serv, USDA, Pacific Northwest Res Stn, Corvallis, OR USA
推荐引用方式
GB/T 7714
Patterson, Paul L.,Healey, Sean P.,Stahl, Goran,et al. Statistical properties of hybrid estimators proposed for GEDI-NASA's global ecosystem dynamics investigation[J]. ENVIRONMENTAL RESEARCH LETTERS,2019,14(6).
APA Patterson, Paul L..,Healey, Sean P..,Stahl, Goran.,Saarela, Svetlana.,Holm, Soren.,...&Yang, Zhiqiang.(2019).Statistical properties of hybrid estimators proposed for GEDI-NASA's global ecosystem dynamics investigation.ENVIRONMENTAL RESEARCH LETTERS,14(6).
MLA Patterson, Paul L.,et al."Statistical properties of hybrid estimators proposed for GEDI-NASA's global ecosystem dynamics investigation".ENVIRONMENTAL RESEARCH LETTERS 14.6(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Patterson, Paul L.]的文章
[Healey, Sean P.]的文章
[Stahl, Goran]的文章
百度学术
百度学术中相似的文章
[Patterson, Paul L.]的文章
[Healey, Sean P.]的文章
[Stahl, Goran]的文章
必应学术
必应学术中相似的文章
[Patterson, Paul L.]的文章
[Healey, Sean P.]的文章
[Stahl, Goran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。