Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1088/1748-9326/ab18df |
Statistical properties of hybrid estimators proposed for GEDI-NASA's global ecosystem dynamics investigation | |
Patterson, Paul L.1; Healey, Sean P.2; Stahl, Goran3; Saarela, Svetlana3; Holm, Soren3; Andersen, Hans-Erik4; Dubayah, Ralph O.5,6; Duncanson, Laura5; Hancock, Steven5; Armstod, John5; Kellner, James R.6,7; Cohen, Warren B.8; Yang, Zhiqiang2 | |
2019-06-01 | |
发表期刊 | ENVIRONMENTAL RESEARCH LETTERS
![]() |
ISSN | 1748-9326 |
出版年 | 2019 |
卷号 | 14期号:6 |
文章类型 | Article |
语种 | 英语 |
国家 | USA; Sweden |
英文摘要 | NASA's Global Ecosystem Dynamics Investigation (GEDI) mission will collect waveform lidar data at a dense sample of similar to 25 m footprints along ground tracks paralleling the orbit of the International Space Station (ISS). GEDI's primary science deliverable will be a 1 km grid of estimated mean aboveground biomass density (Mg ha(-1)), covering the latitudes overflown by ISS (51.6 degrees S to 51.6 degrees N). One option for using the sample of waveforms contained within an individual grid cell to produce an estimate for that cell is hybrid inference, which explicitly incorporates both sampling design and model parameter covariance into estimates of variance around the population mean. We explored statistical properties of hybrid estimators applied in the context of GEDI, using simulations calibrated with lidar and field data from six diverse sites across the United States. We found hybrid estimators of mean biomass to be unbiased and the corresponding estimators of variance appeared to be asymptotically unbiased, with under-estimation of variance by approximately 20% when data from only two clusters (footprint tracks) were available. In our study areas, sampling error contributed more to overall estimates of variance than variability due to the model, and it was the design-based component of the variance that was the source of the variance estimator bias at small sample sizes. These results highlight the importance of maximizing GEDI's sample size in making precise biomass estimates. Given a set of assumptions discussed here, hybrid inference provides a viable framework for estimating biomass at the scale of a 1 km grid cell while formally accounting for both variability due to the model and sampling error. |
英文关键词 | carbon monitoring lidar forest biomass |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000471651700002 |
WOS关键词 | MODEL-BASED INFERENCE ; ABOVEGROUND BIOMASS ; FOREST ; AIRBORNE |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/183743 |
专题 | 气候变化 |
作者单位 | 1.US Forest Serv, USDA, Rocky Mt Res Stn, 240W Prospect, Ft Collins, CO 80526 USA; 2.US Forest Serv, USDA, Rocky Mt Res St, 507 25th St, Ogden, UT 84401 USA; 3.Swedish Univ Agr Sci, Dept Forest Resource Management, Umea, Sweden; 4.US Forest Serv, USDA, Pacific Northwest Res Stn, Seattle, WA USA; 5.Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA; 6.Brown Univ, Inst Brown Environm & Soc, Providence, RI 02912 USA; 7.Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA; 8.US Forest Serv, USDA, Pacific Northwest Res Stn, Corvallis, OR USA |
推荐引用方式 GB/T 7714 | Patterson, Paul L.,Healey, Sean P.,Stahl, Goran,et al. Statistical properties of hybrid estimators proposed for GEDI-NASA's global ecosystem dynamics investigation[J]. ENVIRONMENTAL RESEARCH LETTERS,2019,14(6). |
APA | Patterson, Paul L..,Healey, Sean P..,Stahl, Goran.,Saarela, Svetlana.,Holm, Soren.,...&Yang, Zhiqiang.(2019).Statistical properties of hybrid estimators proposed for GEDI-NASA's global ecosystem dynamics investigation.ENVIRONMENTAL RESEARCH LETTERS,14(6). |
MLA | Patterson, Paul L.,et al."Statistical properties of hybrid estimators proposed for GEDI-NASA's global ecosystem dynamics investigation".ENVIRONMENTAL RESEARCH LETTERS 14.6(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论