GSTDTAP  > 地球科学
DOI10.5194/acp-18-9897-2018
Estimates of exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan
Makar, Paul A.1,2; Akingunola, Ayodeji1,2; Aherne, Julian3; Cole, Amanda S.1,2; Aklilu, Yayne-abeba4; Zhang, Junhua1,2; Wong, Isaac5; Hayden, Katherine1,2; Li, Shao-Meng1,2; Kirk, Jane6; Scott, Ken7; Moran, Michael D.1,2; Robichaud, Alain1,2; Cathcart, Hazel3; Baratzedah, Pegah1,2; Pabla, Balbir1,2; Cheung, Philip1,2; Zheng, Qiong1,2; Jeffries, Dean S.8
2018-07-13
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2018
卷号18期号:13页码:9897-9927
文章类型Article
语种英语
国家Canada
英文摘要

Estimates of potential harmful effects on ecosystems in the Canadian provinces of Alberta and Saskatchewan due to acidifying deposition were calculated, using a 1-year simulation of a high-resolution implementation of the Global Environmental Multiscale-Modelling Air-quality and Chemistry (GEM-MACH) model, and estimates of aquatic and terrestrial ecosystem critical loads. The model simulation was evaluated against two different sources of deposition data: total deposition in precipitation and total deposition to snow-pack in the vicinity of the Athabasca oil sands. The model captured much of the variability of observed ions in wet deposition in precipitation (observed versus model sulfur, nitrogen and base cation R-2 values of 0.90, 0.76 and 0.72, respectively), while being biased high for sulfur deposition, and low for nitrogen and base cations (slopes 2.2, 0.89 and 0.40, respectively). Aircraft-based estimates of fugitive dust emissions, shown to be a factor of 10 higher than reported to national emissions inventories (Zhang et al., 2018), were used to estimate the impact of increased levels of fugitive dust on model results. Model comparisons to open snow-pack observations were shown to be biased high, but in reasonable agreement for sulfur deposition when observations were corrected to account for throughfall in needleleaf forests. The model-observation relationships for precipitation deposition data, along with the expected effects of increased (unreported) base cation emissions, were used to provide a simple observation-based correction to model deposition fields. Base cation deposition was estimated using published observations of base cation fractions in surface-collected particles (Wang et al., 2015).


Both original and observation-corrected model estimates of sulfur, nitrogen, and base cation deposition were used in conjunction with critical load data created using the NEG-ECP (2001) and CLRTAP (2017) methods for calculating critical loads, using variations on the Simple Mass Balance model for terrestrial ecosystems, and the Steady State Water Chemistry and First-order Acidity Balance models for aquatic ecosystems. Potential ecosystem damage was predicted within each of the regions represented by the ecosystem critical load datasets used here, using a combination of 2011 and 2013 emissions inventories. The spatial extent of the regions in exceedance of critical loads varied between 1 x 10(4) and 3.3 x 10(5) km(2), for the more conservative observation-corrected estimates of deposition, with the variation dependent on the ecosystem and critical load calculation methodology. The larger estimates (for aquatic ecosystems) represent a substantial fraction of the area of the provinces examined.


Base cation deposition was shown to be sufficiently high in the region to have a neutralizing effect on acidifying deposition, and the use of the aircraft and precipitation observation-based corrections to base cation deposition resulted in reasonable agreement with snowpack data collected in the oil sands area. However, critical load exceedances calculated using both observations and observation-corrected deposition suggest that the neutralization effect is limited in spatial extent, decreasing rapidly with distance from emissions sources, due to the rapid deposition of emitted primary dust particles as a function of their size. We strongly recommend the use of observation-based correction of model-simulated deposition in estimating critical load exceedances, in future work.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000438536200003
WOS关键词ATHABASCA OIL SANDS ; GASEOUS DRY DEPOSITION ; AIR-QUALITY MODELS ; BULK MICROPHYSICS PARAMETERIZATION ; ATMOSPHERIC AEROSOL PROCESSES ; SIZE-SEGREGATED SIMULATION ; ACID-SENSITIVE LAKES ; REGIONAL-SCALE ; ORGANIC-ACIDS ; SEA-SALT
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/18378
专题地球科学
作者单位1.Environm & Climate Change Canada, Air Qual Res Div, Toronto, ON, Canada;
2.Environm & Climate Change Canada, Air Qual Res Div, Montreal, ON, Canada;
3.Trent Univ, Environm & Resource Studies, Peterborough, ON, Canada;
4.Alberta Environm & Pk, Environm Monitoring & Sci Div, Edmonton, AB, Canada;
5.Canada Ctr Inland Waters, Watershed Hydrol & Ecol Res Div, Environm & Climate Change Canada, Burlington, ON, Canada;
6.Environm & Climate Change Canada, Aquat Contaminants Res Div, Burlington, ON, Canada;
7.Saskatchewan Minist Environm, Tech Resources Branch, Environm Protect Div, Regina, SK, Canada;
8.Environm & Climate Change Canada, Canada Ctr Inland Waters, Burlington, ON, Canada
推荐引用方式
GB/T 7714
Makar, Paul A.,Akingunola, Ayodeji,Aherne, Julian,et al. Estimates of exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2018,18(13):9897-9927.
APA Makar, Paul A..,Akingunola, Ayodeji.,Aherne, Julian.,Cole, Amanda S..,Aklilu, Yayne-abeba.,...&Jeffries, Dean S..(2018).Estimates of exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan.ATMOSPHERIC CHEMISTRY AND PHYSICS,18(13),9897-9927.
MLA Makar, Paul A.,et al."Estimates of exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan".ATMOSPHERIC CHEMISTRY AND PHYSICS 18.13(2018):9897-9927.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Makar, Paul A.]的文章
[Akingunola, Ayodeji]的文章
[Aherne, Julian]的文章
百度学术
百度学术中相似的文章
[Makar, Paul A.]的文章
[Akingunola, Ayodeji]的文章
[Aherne, Julian]的文章
必应学术
必应学术中相似的文章
[Makar, Paul A.]的文章
[Akingunola, Ayodeji]的文章
[Aherne, Julian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。