GSTDTAP  > 气候变化
DOI10.1007/s10584-019-02443-4
Addressing ambiguity in probabilistic assessments of future coastal flooding using possibility distributions
Rohmer, Jeremy; Le Cozannet, Goneri; Manceau, Jean-Charles
2019-07-01
发表期刊CLIMATIC CHANGE
ISSN0165-0009
EISSN1573-1480
出版年2019
卷号155期号:1页码:95-109
文章类型Article
语种英语
国家France
英文摘要

Decision-making in the area of coastal adaptation is facing major challenges due to ambiguity (i.e., deep uncertainty) pertaining to the selection of a probability model for sea level rise (SLR) projections. Possibility distributions are mathematical tools that address this type of uncertainty since they bound all the plausible probability models that are consistent with the available data. In the present study, SLR uncertainties are represented by a possibility distribution constrained by likely ranges provided in the IPCC Fifth Assessment Report and by a review of high-end scenarios. On this basis, we propose a framework combining probabilities and possibilities to evaluate how SLR uncertainties accumulate with other sources of uncertainties, such as future greenhouse gas emissions, upper bounds of future sea level changes, the regional variability of sea level changes, the vertical ground motion, and the contributions of extremes and wave effects. We apply the framework to evaluate the probability of coastal flooding by the year 2100 at a local, low-lying coastal French urban area on the Mediterranean coast. We show that when adaptation is limited to maintaining current defenses, the level of ambiguity is too large to precisely assign a probability model to future flooding. Raising the coastal walls by 85cm creates a safety margin that may not be considered sufficient by local stakeholders. A sensitivity analysis highlights the key role of deep uncertainties pertaining to global SLR and of the statistical uncertainty related to extremes. The ranking of uncertainties strongly depends on the decision-maker's attitude to risk (e.g., neutral, averse), which highlights the need for research combining advanced mathematical theories of uncertainties with decision analytics and social science.


领域气候变化
收录类别SCI-E ; SSCI
WOS记录号WOS:000473162200006
WOS关键词SEA-LEVEL PROJECTIONS ; DEEP UNCERTAINTY ; BELIEF FUNCTIONS ; EXPERT JUDGMENT ; CLIMATE-CHANGE ; RISK
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/184425
专题气候变化
作者单位Bur Rech Geol & Minieres, 3 Av C Guillemin,BP 36009, F-45060 Orleans 2, France
推荐引用方式
GB/T 7714
Rohmer, Jeremy,Le Cozannet, Goneri,Manceau, Jean-Charles. Addressing ambiguity in probabilistic assessments of future coastal flooding using possibility distributions[J]. CLIMATIC CHANGE,2019,155(1):95-109.
APA Rohmer, Jeremy,Le Cozannet, Goneri,&Manceau, Jean-Charles.(2019).Addressing ambiguity in probabilistic assessments of future coastal flooding using possibility distributions.CLIMATIC CHANGE,155(1),95-109.
MLA Rohmer, Jeremy,et al."Addressing ambiguity in probabilistic assessments of future coastal flooding using possibility distributions".CLIMATIC CHANGE 155.1(2019):95-109.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rohmer, Jeremy]的文章
[Le Cozannet, Goneri]的文章
[Manceau, Jean-Charles]的文章
百度学术
百度学术中相似的文章
[Rohmer, Jeremy]的文章
[Le Cozannet, Goneri]的文章
[Manceau, Jean-Charles]的文章
必应学术
必应学术中相似的文章
[Rohmer, Jeremy]的文章
[Le Cozannet, Goneri]的文章
[Manceau, Jean-Charles]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。