Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1038/ncomms14511 |
Fast and covariate-adaptive method amplifies detection power in large-scale multiple hypothesis testing | |
Zhang, Martin J.1; Xia, Fei1; Zou, James1,2,3 | |
2019-07-31 | |
发表期刊 | NATURE COMMUNICATIONS
![]() |
ISSN | 2041-1723 |
出版年 | 2019 |
卷号 | 10 |
文章类型 | Article |
语种 | 英语 |
国家 | USA |
英文摘要 | Multiple hypothesis testing is an essential component of modern data science. In many settings, in addition to the p-value, additional covariates for each hypothesis are available, e.g., functional annotation of variants in genome-wide association studies. Such information is ignored by popular multiple testing approaches such as the Benjamini-Hochberg procedure (BH). Here we introduce AdaFDR, a fast and flexible method that adaptively learns the optimal p-value threshold from covariates to significantly improve detection power. On eQTL analysis of the GTEx data, AdaFDR discovers 32% more associations than BH at the same false discovery rate. We prove that AdaFDR controls false discovery proportion and show that it makes substantially more discoveries while controlling false discovery rate (FDR) in extensive experiments. AdaFDR is computationally efficient and allows multi-dimensional covariates with both numeric and categorical values, making it broadly useful across many applications. |
领域 | 资源环境 |
收录类别 | SCI-E |
WOS记录号 | WOS:000477953000002 |
WOS关键词 | FALSE DISCOVERY RATE ; INCREASES DETECTION POWER |
WOS类目 | Multidisciplinary Sciences |
WOS研究方向 | Science & Technology - Other Topics |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/203234 |
专题 | 资源环境科学 |
作者单位 | 1.Stanford Univ, Dept Elect Engn, Palo Alto, CA 94304 USA; 2.Stanford Univ, Dept Biomed Data Sci, Palo Alto, CA 94304 USA; 3.Chan Zuckerberg Biohub, San Francisco, CA 94158 USA |
推荐引用方式 GB/T 7714 | Zhang, Martin J.,Xia, Fei,Zou, James. Fast and covariate-adaptive method amplifies detection power in large-scale multiple hypothesis testing[J]. NATURE COMMUNICATIONS,2019,10. |
APA | Zhang, Martin J.,Xia, Fei,&Zou, James.(2019).Fast and covariate-adaptive method amplifies detection power in large-scale multiple hypothesis testing.NATURE COMMUNICATIONS,10. |
MLA | Zhang, Martin J.,et al."Fast and covariate-adaptive method amplifies detection power in large-scale multiple hypothesis testing".NATURE COMMUNICATIONS 10(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论