Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1175/JCLI-D-16-0854.1 |
Are Glacials Dry? Consequences for Paleoclimatology and for Greenhouse Warming | |
Scheff, Jacob1; Seager, Richard1; Liu, Haibo1; Coats, Sloan2,3 | |
2017-09-01 | |
发表期刊 | JOURNAL OF CLIMATE
![]() |
ISSN | 0894-8755 |
EISSN | 1520-0442 |
出版年 | 2017 |
卷号 | 30期号:17 |
文章类型 | Article |
语种 | 英语 |
国家 | USA |
英文摘要 | Past cold climates are often thought to have been drier than today on land, which appears to conflict with certain recent studies projecting widespread terrestrial drying with near-future warming. However, other work has found that, over large portions of the continents, the conclusion of future drying versus wetting strongly depends on the physical property of interest. Here, it is shown that this also holds in simulations of the Last Glacial Maximum (LGM): the continents have generally wetter topsoils and higher values of common climate wetness metrics than in the preindustrial, as well as generally lower precipitation and ubiquitously lower photosynthesis (likely driven by the low CO2), with streamflow responses falling in between. Using a large existing global pollen and plant fossil compilation, it is also confirmed that LGM grasslands and open woodlands grew at many sites of present-day forest, seasonal forests at many sites of present-day rain forest, and so forth (116-144 sites out of 302), while changes in the opposite sense were very few (9-17 sites out of 302) and spatially confined. These vegetation changes resemble the model photosynthesis responses but not the hydroclimate responses, while published lake-level changes resemble the latter but not the former. Thus, confidence in both the model hydrologic and photosynthesis projections is increased, and there is no significant conflict. Instead, paleo- and modern climate researchers must carefully define "wetting'' and "drying'' and, in particular, should not assume hydrologic drying on the basis of vegetation decline alone or assume vegetation stress on the basis of declines in hydroclimatic indicators. |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000407276600001 |
WOS关键词 | POLLEN-BASED RECONSTRUCTIONS ; PLANT MACROFOSSIL DATA ; CLIMATE-CHANGE ; POTENTIAL EVAPOTRANSPIRATION ; BIOME RECONSTRUCTIONS ; HYDROLOGICAL CYCLE ; ARCTIC ECOSYSTEMS ; 0 C-14 ; CO2 ; MAXIMUM |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS研究方向 | Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/20646 |
专题 | 气候变化 |
作者单位 | 1.Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA; 2.Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA; 3.Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA |
推荐引用方式 GB/T 7714 | Scheff, Jacob,Seager, Richard,Liu, Haibo,et al. Are Glacials Dry? Consequences for Paleoclimatology and for Greenhouse Warming[J]. JOURNAL OF CLIMATE,2017,30(17). |
APA | Scheff, Jacob,Seager, Richard,Liu, Haibo,&Coats, Sloan.(2017).Are Glacials Dry? Consequences for Paleoclimatology and for Greenhouse Warming.JOURNAL OF CLIMATE,30(17). |
MLA | Scheff, Jacob,et al."Are Glacials Dry? Consequences for Paleoclimatology and for Greenhouse Warming".JOURNAL OF CLIMATE 30.17(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论