GSTDTAP  > 资源环境科学
DOI10.1002/2016WR019347
Probabilistic inversion with graph cuts: Application to the Boise Hydrogeophysical Research Site
Pirot, Guillaume1; Linde, Niklas1; Mariethoz, Gregoire2; Bradford, John H.3
2017-02-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2017
卷号53期号:2
文章类型Article
语种英语
国家Switzerland; USA
英文摘要

Inversion methods that build on multiple-point statistics tools offer the possibility to obtain model realizations that are not only in agreement with field data, but also with conceptual geological models that are represented by training images. A recent inversion approach based on patch-based geostatistical resimulation using graph cuts outperforms state-of-the-art multiple-point statistics methods when applied to synthetic inversion examples featuring continuous and discontinuous property fields. Applications of multiple-point statistics tools to field data are challenging due to inevitable discrepancies between actual subsurface structure and the assumptions made in deriving the training image. We introduce several amendments to the original graph cut inversion algorithm and present a first-ever field application by addressing porosity estimation at the Boise Hydrogeophysical Research Site, Boise, Idaho. We consider both a classical multi-Gaussian and an outcrop-based prior model (training image) that are in agreement with available porosity data. When conditioning to available crosshole ground-penetrating radar data using Markov chain Monte Carlo, we find that the posterior realizations honor overall both the characteristics of the prior models and the geophysical data. The porosity field is inverted jointly with the measurement error and the petrophysical parameters that link dielectric permittivity to porosity. Even though the multi-Gaussian prior model leads to posterior realizations with higher likelihoods, the outcrop-based prior model shows better convergence. In addition, it offers geologically more realistic posterior realizations and it better preserves the full porosity range of the prior.


英文关键词Bayesian inversion graph cuts multiple-point statistics geological realism Boise Hydrogeophysical Research Site ground-penetrating radar
领域资源环境
收录类别SCI-E
WOS记录号WOS:000398568800013
WOS关键词POINT STATISTICS SIMULATIONS ; MONTE-CARLO-SIMULATION ; STEADY-STATE ; MODEL ; UNCERTAINTY ; ENSEMBLE ; FIELDS ; CALIBRATION ; TOMOGRAPHY ; REFLECTION
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/20826
专题资源环境科学
作者单位1.Univ Lausanne, Inst Earth Sci, Appl & Environm Geophys Grp, Lausanne, Switzerland;
2.Univ Lausanne, Inst Earth Surface Dynam, Lausanne, Switzerland;
3.Boise State Univ, Dept Geosci, Boise, ID 83725 USA
推荐引用方式
GB/T 7714
Pirot, Guillaume,Linde, Niklas,Mariethoz, Gregoire,et al. Probabilistic inversion with graph cuts: Application to the Boise Hydrogeophysical Research Site[J]. WATER RESOURCES RESEARCH,2017,53(2).
APA Pirot, Guillaume,Linde, Niklas,Mariethoz, Gregoire,&Bradford, John H..(2017).Probabilistic inversion with graph cuts: Application to the Boise Hydrogeophysical Research Site.WATER RESOURCES RESEARCH,53(2).
MLA Pirot, Guillaume,et al."Probabilistic inversion with graph cuts: Application to the Boise Hydrogeophysical Research Site".WATER RESOURCES RESEARCH 53.2(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pirot, Guillaume]的文章
[Linde, Niklas]的文章
[Mariethoz, Gregoire]的文章
百度学术
百度学术中相似的文章
[Pirot, Guillaume]的文章
[Linde, Niklas]的文章
[Mariethoz, Gregoire]的文章
必应学术
必应学术中相似的文章
[Pirot, Guillaume]的文章
[Linde, Niklas]的文章
[Mariethoz, Gregoire]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。