GSTDTAP  > 资源环境科学
DOI10.1029/2018WR023160
A Clustering Preprocessing Framework for the Subannual Calibration of a Hydrological Model Considering Climate-Land Surface Variations
Lan, T.1; Lin, K. R.1,2; Liu, Z. Y.1,2; He, Y. H.1,2; Xu, C. Y.3; Zhang, H. B.4; Chen, X. H.1,2
2018-12-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2018
卷号54期号:12页码:10034-10052
文章类型Article
语种英语
国家Peoples R China; Norway
英文摘要

One model structural deficiency is that some dynamic characteristics (such as seasonal dynamics) in catchment conditions are not explicitly represented by hydrological models. This study integrates data mining techniques to develop a clustering preprocessing framework for the subannual calibration of hydrological models to simulate seasonal dynamic behaviors. The proposed framework aims to solve the problems caused by missing processes and deficiencies of hydrological models, providing guidance for future model development. A set of climatic-land surface indices is provided and preprocessed using the maximal information coefficient and the principal component analysis. Two clustering operations are performed based on the preprocessed climatic index and land-surface index systems. Hydrological data are clustered into subannual periods for calibration. The parameters are independently optimized for each subperiod using a modified parallel calibration scheme and are then combined to generate a continuous simulation. The framework is applied in calibrating the TOPMODEL. The results show that the performance of the model with a clustering preprocessing framework in the middle- and low-flow conditions is significantly improved without reducing the simulation accuracy for high flows. The transposability of the model parameters from the calibration to validation period has been improved significantly as well. The anomalous parameter values may be attributed in part to the convergence problem when using an optimization algorithm. Though well applied in the TOPMODEL, the framework has the potential to be used in other hydrological models.


英文关键词clustering preprocessing time-variant parameters subannual calibration hydrological prediction anomalous parameter values
领域资源环境
收录类别SCI-E
WOS记录号WOS:000456949300002
WOS关键词RAINFALL-RUNOFF MODELS ; TIME-SERIES DATA ; SEASONAL STREAMFLOW ; PREDICTION INTERVALS ; CONCEPTUAL-FRAMEWORK ; OBJECTIVE FUNCTIONS ; REGIONAL PATTERNS ; HANZHONG BASIN ; CATCHMENT ; PARAMETERS
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21472
专题资源环境科学
作者单位1.Sun Yat Sen Univ, Ctr Water Resources & Environm, Guangzhou, Guangdong, Peoples R China;
2.Sun Yat Sen Univ, Guangdong Engn Technol Res Ctr Water Secur Regula, Guangzhou, Guangdong, Peoples R China;
3.Univ Oslo, Dept Geosci, Oslo, Norway;
4.Changan Univ, Sch Environm Sci & Engn, Xian, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Lan, T.,Lin, K. R.,Liu, Z. Y.,et al. A Clustering Preprocessing Framework for the Subannual Calibration of a Hydrological Model Considering Climate-Land Surface Variations[J]. WATER RESOURCES RESEARCH,2018,54(12):10034-10052.
APA Lan, T..,Lin, K. R..,Liu, Z. Y..,He, Y. H..,Xu, C. Y..,...&Chen, X. H..(2018).A Clustering Preprocessing Framework for the Subannual Calibration of a Hydrological Model Considering Climate-Land Surface Variations.WATER RESOURCES RESEARCH,54(12),10034-10052.
MLA Lan, T.,et al."A Clustering Preprocessing Framework for the Subannual Calibration of a Hydrological Model Considering Climate-Land Surface Variations".WATER RESOURCES RESEARCH 54.12(2018):10034-10052.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lan, T.]的文章
[Lin, K. R.]的文章
[Liu, Z. Y.]的文章
百度学术
百度学术中相似的文章
[Lan, T.]的文章
[Lin, K. R.]的文章
[Liu, Z. Y.]的文章
必应学术
必应学术中相似的文章
[Lan, T.]的文章
[Lin, K. R.]的文章
[Liu, Z. Y.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。