GSTDTAP  > 资源环境科学
DOI10.1029/2017WR021649
Riverine Bathymetry Imaging With Indirect Observations
Lee, Jonghyun1,2; Ghorbanidehno, Hojat3; Farthing, Matthew W.4; Hesser, Tyler J.4; Darve, Eric F.3,5; Kitanidis, Peter K.5,6
2018-05-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2018
卷号54期号:5页码:3704-3727
文章类型Article
语种英语
国家USA
英文摘要

Bathymetry, i.e., depth, imaging in a river is of crucial importance for shipping operations and flood management. With advancements in sensor technology and plentiful computational resources, various types of indirect measurements can be used to estimate high-resolution river bed topography. In this work, we image river bed topography using depth-averaged quasi-steady velocity observations related to the topography through the 2-D shallow water equations. The principal component geostatistical approach (PCGA), a fast and scalable variational inverse modeling method powered by low-rank representation of covariance matrix structure, is presented and applied to two riverine bathymetry identification problems. To compare the efficiency and effectiveness of the proposed method, an ensemble-based approach is also applied to the test problems. It is demonstrated that PCGA is superior to the ensemble-based approach in terms of computational effort and accuracy because of the successive linearization of the forward model and the optimal low-rank representation of the prior covariance matrix. To investigate how different low-rank covariance matrix representation by the two approaches can affect the solution accuracy, we analyze the direct survey data of the river bottom topography in the test problem and show that PCGA utilizes more efficient and parsimonious choice of the solution basis than the ensemble-based approach. Geostatistical analysis performed on the direct survey data also confirms the validity of the chosen covariance model and its structural parameters.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000442351300025
WOS关键词ENSEMBLE KALMAN FILTER ; COMPONENT GEOSTATISTICAL APPROACH ; STATISTICAL INVERSE PROBLEMS ; DATA ASSIMILATION ; COVARIANCE MATRICES ; MODEL ; CHANNELS ; ELEMENT ; SURFACE ; FLOWS
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21610
专题资源环境科学
作者单位1.Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI 96822 USA;
2.Univ Hawaii Manoa, Water Resources Res Ctr, Honolulu, HI 96822 USA;
3.Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;
4.US Army, Engn Res & Dev Ctr, Coastal & Hydraul Lab, Vicksburg, MS USA;
5.Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA;
6.Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
推荐引用方式
GB/T 7714
Lee, Jonghyun,Ghorbanidehno, Hojat,Farthing, Matthew W.,et al. Riverine Bathymetry Imaging With Indirect Observations[J]. WATER RESOURCES RESEARCH,2018,54(5):3704-3727.
APA Lee, Jonghyun,Ghorbanidehno, Hojat,Farthing, Matthew W.,Hesser, Tyler J.,Darve, Eric F.,&Kitanidis, Peter K..(2018).Riverine Bathymetry Imaging With Indirect Observations.WATER RESOURCES RESEARCH,54(5),3704-3727.
MLA Lee, Jonghyun,et al."Riverine Bathymetry Imaging With Indirect Observations".WATER RESOURCES RESEARCH 54.5(2018):3704-3727.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lee, Jonghyun]的文章
[Ghorbanidehno, Hojat]的文章
[Farthing, Matthew W.]的文章
百度学术
百度学术中相似的文章
[Lee, Jonghyun]的文章
[Ghorbanidehno, Hojat]的文章
[Farthing, Matthew W.]的文章
必应学术
必应学术中相似的文章
[Lee, Jonghyun]的文章
[Ghorbanidehno, Hojat]的文章
[Farthing, Matthew W.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。