GSTDTAP  > 资源环境科学
DOI10.1029/2017WR022489
A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: Benchmarking Against Industry-Standard Algorithms
Qin, Youwei1,2; Kavetski, Dmitri3; Kuczera, George2
2018-11-01
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2018
卷号54期号:11页码:9637-9654
文章类型Article
语种英语
国家Peoples R China; Australia
英文摘要

Optimization of model parameters is a ubiquitous task in hydrological and environmental modeling. Currently, the environmental modeling community tends to favor evolutionary techniques over classical Newton-type methods, in the light of the geometrically problematic features of objective functions, such as multiple optima and general nonsmoothness. The companion paper (Qin et al., 2018, ) introduced the robust Gauss-Newton (RGN) algorithm, an enhanced version of the standard Gauss-Newton algorithm that employs several heuristics to enhance its explorative abilities and perform robustly even for problematic objective functions. This paper focuses on benchmarking the RGN algorithm against three optimization algorithms generally accepted as best practice in the hydrological community, namely, the Levenberg-Marquardt algorithm, the shuffled complex evolution (SCE) search (with 2 and 10 complexes), and the dynamically dimensioned search (DDS). The empirical case studies include four conceptual hydrological models and three catchments. Empirical results indicate that, on average, RGN is 2-3 times more efficient than SCE (2 complexes) by achieving comparable robustness at a lower cost, 7-9 times more efficient than SCE (10 complexes) by trading off some speed to more than compensate for a somewhat lower robustness, 5-7 times more efficient than Levenberg-Marquardt by achieving higher robustness at a moderate additional cost, and 12-26 times more efficient than DDS in terms of robustness-per-fixed-cost. A detailed analysis of performance in terms of reliability and cost is provided. Overall, the RGN algorithm is an attractive option for the calibration of hydrological models, and we recommend further investigation of its benefits for broader types of optimization problems.


英文关键词model calibration parameter optimization robust Gauss-Newton algorithm global optimization evolutionary optimizer optimization efficiency
领域资源环境
收录类别SCI-E
WOS记录号WOS:000453369400058
WOS关键词GLOBAL OPTIMIZATION ; CATCHMENT MODELS ; CALIBRATION ; INFERENCE
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
被引频次:27[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/21839
专题资源环境科学
作者单位1.Hohai Univ, Ctr Global Change & Water Cycle, State Key Lab Hydrol Water Hesources & Hydraul En, Nanjing, Jiangsu, Peoples R China;
2.Univ Newcastle, Sch Engn, Callaghan, NSW, Australia;
3.Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA, Australia
推荐引用方式
GB/T 7714
Qin, Youwei,Kavetski, Dmitri,Kuczera, George. A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: Benchmarking Against Industry-Standard Algorithms[J]. WATER RESOURCES RESEARCH,2018,54(11):9637-9654.
APA Qin, Youwei,Kavetski, Dmitri,&Kuczera, George.(2018).A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: Benchmarking Against Industry-Standard Algorithms.WATER RESOURCES RESEARCH,54(11),9637-9654.
MLA Qin, Youwei,et al."A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: Benchmarking Against Industry-Standard Algorithms".WATER RESOURCES RESEARCH 54.11(2018):9637-9654.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qin, Youwei]的文章
[Kavetski, Dmitri]的文章
[Kuczera, George]的文章
百度学术
百度学术中相似的文章
[Qin, Youwei]的文章
[Kavetski, Dmitri]的文章
[Kuczera, George]的文章
必应学术
必应学术中相似的文章
[Qin, Youwei]的文章
[Kavetski, Dmitri]的文章
[Kuczera, George]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。