GSTDTAP  > 资源环境科学
DOI10.1029/2019WR025656
Historic Flood Reconstruction With the Use of an Artificial Neural Network
Bomers, A.1; van der Meulen, B.2; Schielen, R. M. J.1,3; Hulscher, S. J. M. H.1
2019-11-23
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2019
文章类型Article;Early Access
语种英语
国家Netherlands
英文摘要

The uncertainty in flood frequency relations can be decreased by adding reconstructed historic flood events to the data set of measured annual maximum discharges. This study shows that an artificial neural network trained with a 1-D/2-D coupled hydraulic model is capable of reconstructing river floods with multiple dike breaches and inundations of the hinterland with high accuracy. The benefit of an artificial neural network is that it reduces computational times. With this network, the maximum discharge of the 1809 flood event of the Rhine River and its 95% confidence interval was reconstructed. The study shows that the trained artificial neural network is capable of reproducing the behavior of the hydraulic model correctly. The maximum discharge during the flood event was predicted with high accuracy even though the underlying input data are, due to the fact that the event occurred more than 200 years ago, uncertain. The confidence interval of the prediction was reduced by 43% compared to earlier predictions that did not use hydraulic models.


英文关键词Flood reconstruction Artificial Neural Network Confidence interval Surogatte modelling
领域资源环境
收录类别SCI-E
WOS记录号WOS:000498037300001
WOS关键词MULTILAYER FEEDFORWARD NETWORKS ; FREQUENCY-ANALYSIS ; RIVER ; UNCERTAINTY ; SIMULATION ; ROUGHNESS ; SYSTEM ; MODEL ; RISK
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/223926
专题资源环境科学
作者单位1.Univ Twente, Water Engn & Management, Enschede, Netherlands;
2.Univ Utrecht, Phys Geog, Utrecht, Netherlands;
3.Minist Infrastruct & Water Management Rijkswaters, Arnhem, Netherlands
推荐引用方式
GB/T 7714
Bomers, A.,van der Meulen, B.,Schielen, R. M. J.,et al. Historic Flood Reconstruction With the Use of an Artificial Neural Network[J]. WATER RESOURCES RESEARCH,2019.
APA Bomers, A.,van der Meulen, B.,Schielen, R. M. J.,&Hulscher, S. J. M. H..(2019).Historic Flood Reconstruction With the Use of an Artificial Neural Network.WATER RESOURCES RESEARCH.
MLA Bomers, A.,et al."Historic Flood Reconstruction With the Use of an Artificial Neural Network".WATER RESOURCES RESEARCH (2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bomers, A.]的文章
[van der Meulen, B.]的文章
[Schielen, R. M. J.]的文章
百度学术
百度学术中相似的文章
[Bomers, A.]的文章
[van der Meulen, B.]的文章
[Schielen, R. M. J.]的文章
必应学术
必应学术中相似的文章
[Bomers, A.]的文章
[van der Meulen, B.]的文章
[Schielen, R. M. J.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。