GSTDTAP  > 资源环境科学
DOI10.1029/2019WR024828
Insights Into Preferential Flow Snowpack Runoff Using Random Forest
Avanzi, Francesco1; Johnson, Ryan Curtis2; Oroza, Carlos A.2; Hirashima, Hiroyuki3; Maurer, Tessa1; Yamaguchi, Satoru3
2019-12-12
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2019
卷号55期号:12页码:10727-10746
文章类型Article
语种英语
国家USA; Japan
英文摘要

Using 12 seasons of data from a multicompartment snow lysimeter and a statistical learning algorithm (Random Forest), we investigated to what extent preferential flow snowpack runoff can be predicted from concurrent weather and snow conditions, as well as the relative importance of factors affecting this process. We found that preferential flow development can be partially predicted based on concurrent weather and snow conditions. In this case study where snow is generally wet and coarse, the most important predictors of standard and maximum deviation from mean spatial snowpack runoff are related to weather inputs and their interaction with the snowpack (rainfall, longwave radiation, and snow-surface temperature) and to more season-specific snow properties (number of macroscopic snow layers and snowfall days to date, the latter being a feature we included to account for microstructural heterogeneity developing at smaller scales than macroscopic layers). This combination between weather and season-specific snow factors and the fact that several of these important features are correlated with other processes result in significant seasonal variability of the Random Forest algorithm's accuracy. All versions of the Random Forest algorithm underestimated seasonal peaks in preferential flow, which points to these peaks being either undersampled in our data set or caused by poorly understood redistribution processes acting at larger spatial scales than the size of our multicompartment lysimeter (e.g., dimples).


英文关键词preferential flow snow Random Forest lysimeters SNOWPACK
领域资源环境
收录类别SCI-E
WOS记录号WOS:000502525900001
WOS关键词WETTING FRONT ADVANCE ; WATER TRANSPORT MODEL ; ICE-LAYER FORMATION ; MELTWATER STORAGE ; WINTER PRECIPITATION ; RICHARDS EQUATION ; TEMPERATURE ; SNOWMELT ; INFILTRATION ; SIMULATION
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/223981
专题资源环境科学
作者单位1.Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA;
2.Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT USA;
3.Natl Res Inst Earth Sci & Disaster Resilience, Snow & Ice Res Ctr, Nagaoka, Niigata, Japan
推荐引用方式
GB/T 7714
Avanzi, Francesco,Johnson, Ryan Curtis,Oroza, Carlos A.,et al. Insights Into Preferential Flow Snowpack Runoff Using Random Forest[J]. WATER RESOURCES RESEARCH,2019,55(12):10727-10746.
APA Avanzi, Francesco,Johnson, Ryan Curtis,Oroza, Carlos A.,Hirashima, Hiroyuki,Maurer, Tessa,&Yamaguchi, Satoru.(2019).Insights Into Preferential Flow Snowpack Runoff Using Random Forest.WATER RESOURCES RESEARCH,55(12),10727-10746.
MLA Avanzi, Francesco,et al."Insights Into Preferential Flow Snowpack Runoff Using Random Forest".WATER RESOURCES RESEARCH 55.12(2019):10727-10746.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Avanzi, Francesco]的文章
[Johnson, Ryan Curtis]的文章
[Oroza, Carlos A.]的文章
百度学术
百度学术中相似的文章
[Avanzi, Francesco]的文章
[Johnson, Ryan Curtis]的文章
[Oroza, Carlos A.]的文章
必应学术
必应学术中相似的文章
[Avanzi, Francesco]的文章
[Johnson, Ryan Curtis]的文章
[Oroza, Carlos A.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。