GSTDTAP  > 资源环境科学
DOI10.1111/ele.13520
Integrating data mining and transmission theory in the ecology of infectious diseases
Han, Barbara A.1; 39;Regan, Suzanne M.2
2020-05-22
发表期刊ECOLOGY LETTERS
ISSN1461-023X
EISSN1461-0248
出版年2020
卷号23期号:8页码:1178-1188
文章类型Article
语种英语
国家USA
英文摘要

Our understanding of ecological processes is built on patterns inferred from data. Applying modern analytical tools such as machine learning to increasingly high dimensional data offers the potential to expand our perspectives on these processes, shedding new light on complex ecological phenomena such as pathogen transmission in wild populations. Here, we propose a novel approach that combines data mining with theoretical models of disease dynamics. Using rodents as an example, we incorporate statistical differences in the life history features of zoonotic reservoir hosts into pathogen transmission models, enabling us to bound the range of dynamical phenomena associated with hosts, based on their traits. We then test for associations between equilibrium prevalence, a key epidemiological metric and data on human outbreaks of rodent-borne zoonoses, identifying matches between empirical evidence and theoretical predictions of transmission dynamics. We show how this framework can be generalized to other systems through a rubric of disease models and parameters that can be derived from empirical data. By linking life history components directly to their effects on disease dynamics, our mining-modelling approach integrates machine learning and theoretical models to explore mechanisms in the macroecology of pathogen transmission and their consequences for spillover infection to humans.


英文关键词Boosted regression disease dynamics disease macroecology pathogen transmission random forest statistical learning zoonosis zoonotic spillover
领域资源环境
收录类别SCI-E
WOS记录号WOS:000534646500001
WOS关键词ANIMAL MIGRATION ; MONKEYPOX VIRUS ; HOST ; DYNAMICS ; BIODIVERSITY ; HISTORY ; LIFE ; INFERENCE ; PATHWAYS ; BEHAVIOR
WOS类目Ecology
WOS研究方向Environmental Sciences & Ecology
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/270426
专题资源环境科学
作者单位1.Cary Inst Ecosyst Studies, Box AB Millbrook, Millbrook, NY 12571 USA;
2.North Carolina A&T State Univ, Dept Math & Stat, 1601 E Market St, Greensboro, NC 27411 USA;
3.Univ Georgia, Odum Sch Ecol, 140 E Green St, Athens, GA 30602 USA;
4.Univ Georgia, Ctr Ecol Infect Dis, 203 DW Brooks Dr, Athens, GA 30602 USA
推荐引用方式
GB/T 7714
Han, Barbara A.,39;Regan, Suzanne M.. Integrating data mining and transmission theory in the ecology of infectious diseases[J]. ECOLOGY LETTERS,2020,23(8):1178-1188.
APA Han, Barbara A.,&39;Regan, Suzanne M..(2020).Integrating data mining and transmission theory in the ecology of infectious diseases.ECOLOGY LETTERS,23(8),1178-1188.
MLA Han, Barbara A.,et al."Integrating data mining and transmission theory in the ecology of infectious diseases".ECOLOGY LETTERS 23.8(2020):1178-1188.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Han, Barbara A.]的文章
[39;Regan, Suzanne M.]的文章
百度学术
百度学术中相似的文章
[Han, Barbara A.]的文章
[39;Regan, Suzanne M.]的文章
必应学术
必应学术中相似的文章
[Han, Barbara A.]的文章
[39;Regan, Suzanne M.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。