GSTDTAP  > 气候变化
DOI10.1029/2018GL079095
Intense Electric Fields and Electron-Scale Substructure Within Magnetotail Flux Ropes as Revealed by the Magnetospheric Multiscale Mission
Stawarz, J. E.1; Eastwood, J. P.1; Genestreti, K. J.2; Nakamura, R.2; Ergun, R. E.3,4; Burgess, D.5; Burch, J. L.6; Fuselier, S. A.6,7; Gershman, D. J.8; Giles, B. L.8; Le Contel, O.9; Lindqvist, P. -A.10; Russell, C. T.11; Torbert, R. B.12
2018-09-16
发表期刊GEOPHYSICAL RESEARCH LETTERS
ISSN0094-8276
EISSN1944-8007
出版年2018
卷号45期号:17页码:8783-8792
文章类型Article
语种英语
国家England; Austria; USA; France; Sweden
英文摘要

Three flux ropes associated with near-Earth magnetotail reconnection are analyzed using Magnetospheric Multiscale observations. The flux ropes are Earthward propagating with sizes from similar to 3 to 11 ion inertial lengths. Significantly different axial orientations are observed, suggesting spatiotemporal variability in the reconnection and/or flux rope dynamics. An electron-scale vortex, associated with one of the most intense electric fields (E) in the event, is observed within one of the flux ropes. This E is predominantly perpendicular to the magnetic field (B); the electron vortex is frozen-in with E x B drifting electrons carrying perpendicular current and causing a small-scale magnetic enhancement. The vortex is similar to 16 electron gyroradii in size perpendicular to B and potentially elongated parallel to B. The need to decouple the frozen-in vortical motion from the surrounding plasma implies a parallel E at the structure's ends. The formation of frozen-in electron vortices within reconnection-generated flux ropes may have implications for particle acceleration.


Plain LanguageSummary The release of magnetic energy into particle motion through magnetic reconnection is a key driver of dynamics in the Earth's magnetosphere and other space plasmas. In order to understand how the released magnetic energy is distributed and ultimately heats the particles, a detailed examination of the structures formed by magnetic reconnection is necessary. One common structure produced by reconnection is a twisted magnetic field known as a flux rope. We use new data from the National Aeronautics and Space Administration's Magnetospheric Multiscale satellites to examine both the large-and small-scale properties of three flux ropes associated with a single reconnection event. The results reveal the intrinsic three-dimensional nature of the overall reconnection event, which may stem either from variability at the reconnection site and/or the subsequent dynamics of the structures after they form. Additionally, the high-resolution measurements reveal a new small-scale structure, namely, a vortex of electrons, inside of one of the flux ropes. The presence of such vortices may contribute to accelerating particles and points to the necessity of better understanding the substructure of flux ropes in order to characterize particle energization in magnetic reconnection.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000445727500010
WOS关键词GLOBAL HYBRID SIMULATION ; MAGNETIC RECONNECTION ; EARTHS MAGNETOTAIL ; PLASMA SHEET ; HOLES ; BOUNDARY ; MMS ; ISLANDS
WOS类目Geosciences, Multidisciplinary
WOS研究方向Geology
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/27731
专题气候变化
作者单位1.Imperial Coll London, Dept Phys, London, England;
2.Austrian Acad Sci, Space Res Inst, Graz, Austria;
3.Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA;
4.Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA;
5.Queen Mary Univ London, Sch Phys & Astron, London, England;
6.Southwest Res Inst, San Antonio, TX USA;
7.Univ Texas San Antonio, San Antonio, TX USA;
8.NASA, Goddard Space Flight Ctr, Greenbelt, MD USA;
9.Univ Paris Sud, Sorbonne Univ, CNRS, Ecole Polytech,Observ Paris,Lab Phys Plasmas, Paris, France;
10.KTH Royal Inst Technol, Sch Elect Engn, Stockholm, Sweden;
11.Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA;
12.Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
推荐引用方式
GB/T 7714
Stawarz, J. E.,Eastwood, J. P.,Genestreti, K. J.,et al. Intense Electric Fields and Electron-Scale Substructure Within Magnetotail Flux Ropes as Revealed by the Magnetospheric Multiscale Mission[J]. GEOPHYSICAL RESEARCH LETTERS,2018,45(17):8783-8792.
APA Stawarz, J. E..,Eastwood, J. P..,Genestreti, K. J..,Nakamura, R..,Ergun, R. E..,...&Torbert, R. B..(2018).Intense Electric Fields and Electron-Scale Substructure Within Magnetotail Flux Ropes as Revealed by the Magnetospheric Multiscale Mission.GEOPHYSICAL RESEARCH LETTERS,45(17),8783-8792.
MLA Stawarz, J. E.,et al."Intense Electric Fields and Electron-Scale Substructure Within Magnetotail Flux Ropes as Revealed by the Magnetospheric Multiscale Mission".GEOPHYSICAL RESEARCH LETTERS 45.17(2018):8783-8792.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Stawarz, J. E.]的文章
[Eastwood, J. P.]的文章
[Genestreti, K. J.]的文章
百度学术
百度学术中相似的文章
[Stawarz, J. E.]的文章
[Eastwood, J. P.]的文章
[Genestreti, K. J.]的文章
必应学术
必应学术中相似的文章
[Stawarz, J. E.]的文章
[Eastwood, J. P.]的文章
[Genestreti, K. J.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。