GSTDTAP  > 地球科学
DOI10.1016/j.atmosres.2019.104798
Ordinal regression algorithms for the analysis of convective situations over Madrid-Barajas airport
Guijo-Rubio, D.1; Casanova-Mateo, C.2; Sanz-Justo, J.3; Gutierrez, P. A.1; Cornejo-Bueno, S.4; Hervas, C.1; Salcedo-Sanz, S.4
2020-05-15
发表期刊ATMOSPHERIC RESEARCH
ISSN0169-8095
EISSN1873-2895
出版年2020
卷号236
文章类型Article
语种英语
国家Spain
英文摘要

In this paper we tackle a problem of convective situations analysis at Adolfo-Suarez Madrid-Barajas International Airport (Spain), based on Ordinal Regression algorithms. The diagnosis of convective clouds is key in a large airport like Barajas, since these meteorological events are associated with strong winds and local precipitation, which may affect air and land operations at the airport. In this work, we deal with a 12-h time horizon in the analysis of convective clouds, using as input variables data from a radiosonde station and also from numerical weather models. The information about the objective variable (convective clouds presence at the airport) has been obtained from the Madrid-Barajas METAR and SPECI aeronautical reports. We treat the problem as an ordinal regression task, where there exist a natural order among the classes. Moreover, the classification problem is highly imbalanced, since there are very few convective clouds events compared to clear days. Thus, a process of oversampling is applied to the database in order to obtain a better balance of the samples for this specific problem. An important number of ordinal regression methods are then tested in the experimental part of the work, showing that the best approach for this problem is the SVORIM algorithm, based on the Support Vector Machine strategy, but adapted for ordinal regression problems. The SVORIM algorithm shows a good accuracy in the case of thunderstorms and Cumulonimbus clouds, which represent a real hazard for the airport operations.


英文关键词Convective clouds Convective analysis Airports Machine learning techniques Ordinal regression
领域地球科学
收录类别SCI-E
WOS记录号WOS:000525322900018
WOS关键词LOW-VISIBILITY EVENTS ; SPATIAL-DISTRIBUTION ; THUNDERSTORMS ; FORECAST ; SENSITIVITY ; PREDICTION ; IMPACT ; ENERGY ; STORMS
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/278885
专题地球科学
作者单位1.Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain;
2.Univ Politecn Madrid, Dept Civil Engn Construct Infrastruct & Transport, Madrid, Spain;
3.Univ Valladolid, Remote Sensing Lab, LATUV, Valladolid, Spain;
4.Univ Alcala De Henares, Dept Signal Proc & Commun, Madrid 28871, Spain
推荐引用方式
GB/T 7714
Guijo-Rubio, D.,Casanova-Mateo, C.,Sanz-Justo, J.,et al. Ordinal regression algorithms for the analysis of convective situations over Madrid-Barajas airport[J]. ATMOSPHERIC RESEARCH,2020,236.
APA Guijo-Rubio, D..,Casanova-Mateo, C..,Sanz-Justo, J..,Gutierrez, P. A..,Cornejo-Bueno, S..,...&Salcedo-Sanz, S..(2020).Ordinal regression algorithms for the analysis of convective situations over Madrid-Barajas airport.ATMOSPHERIC RESEARCH,236.
MLA Guijo-Rubio, D.,et al."Ordinal regression algorithms for the analysis of convective situations over Madrid-Barajas airport".ATMOSPHERIC RESEARCH 236(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guijo-Rubio, D.]的文章
[Casanova-Mateo, C.]的文章
[Sanz-Justo, J.]的文章
百度学术
百度学术中相似的文章
[Guijo-Rubio, D.]的文章
[Casanova-Mateo, C.]的文章
[Sanz-Justo, J.]的文章
必应学术
必应学术中相似的文章
[Guijo-Rubio, D.]的文章
[Casanova-Mateo, C.]的文章
[Sanz-Justo, J.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。