GSTDTAP  > 气候变化
DOI10.1029/2019JD031304
Data Assimilation for Climate Research: Model Parameter Estimation of Large-Scale Condensation Scheme
Kotsuki, Shunji1,2,3,4,5; Sato, Yousuke1,6; Miyoshi, Takemasa1,4,5,7,8
2020-01-16
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2020
卷号125期号:1
文章类型Article
语种英语
国家Japan; USA
英文摘要

This study proposes using data assimilation (DA) for climate research as a tool for optimizing model parameters objectively. Mitigating radiation bias is very important for climate change assessments with general circulation models. With the Nonhydrostatic ICosahedral Atmospheric Model (NICAM), this study estimated an autoconversion parameter in a large-scale condensation scheme. We investigated two approaches to reducing radiation bias: examining useful satellite observations for parameter estimation and exploring the advantages of estimating spatially varying parameters. The parameter estimation accelerated autoconversion speed when we used liquid water path, outgoing longwave radiation, or outgoing shortwave radiation (OSR). Accelerated autoconversion reduced clouds and mitigated overestimated OSR bias of the NICAM. An ensemble-based DA with horizontal localization can estimate spatially varying parameters. When liquid water path was used, the local parameter estimation resulted in better cloud representations and improved OSR bias in regions where shallow clouds are dominant.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000514584000010
WOS关键词TRANSFORM KALMAN FILTER ; DROPLET GROWTH ; PART I ; ENSEMBLE ; CLOUDS ; NICAM ; SYSTEM ; IMPACT ; CIRCULATION ; SENSITIVITY
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/280002
专题气候变化
作者单位1.RIKEN, Ctr Computat Sci, Kobe, Hyogo, Japan;
2.Chiba Univ, Ctr Ctr Environm Remote Sensing, Chiba, Japan;
3.Japan Sci & Technol Agcy, PRESTO, Chiba, Japan;
4.RIKEN, Interdisciplinary Theoret & Math Sci Program, Kobe, Hyogo, Japan;
5.RIKEN, Cluster Pioneering Res, Kobe, Hyogo, Japan;
6.Hokkaido Univ, Dept Earth & Planetary Sci, Fac Sci, Sapporo, Hokkaido, Japan;
7.Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan;
8.Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
推荐引用方式
GB/T 7714
Kotsuki, Shunji,Sato, Yousuke,Miyoshi, Takemasa. Data Assimilation for Climate Research: Model Parameter Estimation of Large-Scale Condensation Scheme[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2020,125(1).
APA Kotsuki, Shunji,Sato, Yousuke,&Miyoshi, Takemasa.(2020).Data Assimilation for Climate Research: Model Parameter Estimation of Large-Scale Condensation Scheme.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,125(1).
MLA Kotsuki, Shunji,et al."Data Assimilation for Climate Research: Model Parameter Estimation of Large-Scale Condensation Scheme".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 125.1(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kotsuki, Shunji]的文章
[Sato, Yousuke]的文章
[Miyoshi, Takemasa]的文章
百度学术
百度学术中相似的文章
[Kotsuki, Shunji]的文章
[Sato, Yousuke]的文章
[Miyoshi, Takemasa]的文章
必应学术
必应学术中相似的文章
[Kotsuki, Shunji]的文章
[Sato, Yousuke]的文章
[Miyoshi, Takemasa]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。