Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1029/2019JD031304 |
Data Assimilation for Climate Research: Model Parameter Estimation of Large-Scale Condensation Scheme | |
Kotsuki, Shunji1,2,3,4,5; Sato, Yousuke1,6; Miyoshi, Takemasa1,4,5,7,8 | |
2020-01-16 | |
发表期刊 | JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
![]() |
ISSN | 2169-897X |
EISSN | 2169-8996 |
出版年 | 2020 |
卷号 | 125期号:1 |
文章类型 | Article |
语种 | 英语 |
国家 | Japan; USA |
英文摘要 | This study proposes using data assimilation (DA) for climate research as a tool for optimizing model parameters objectively. Mitigating radiation bias is very important for climate change assessments with general circulation models. With the Nonhydrostatic ICosahedral Atmospheric Model (NICAM), this study estimated an autoconversion parameter in a large-scale condensation scheme. We investigated two approaches to reducing radiation bias: examining useful satellite observations for parameter estimation and exploring the advantages of estimating spatially varying parameters. The parameter estimation accelerated autoconversion speed when we used liquid water path, outgoing longwave radiation, or outgoing shortwave radiation (OSR). Accelerated autoconversion reduced clouds and mitigated overestimated OSR bias of the NICAM. An ensemble-based DA with horizontal localization can estimate spatially varying parameters. When liquid water path was used, the local parameter estimation resulted in better cloud representations and improved OSR bias in regions where shallow clouds are dominant. |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000514584000010 |
WOS关键词 | TRANSFORM KALMAN FILTER ; DROPLET GROWTH ; PART I ; ENSEMBLE ; CLOUDS ; NICAM ; SYSTEM ; IMPACT ; CIRCULATION ; SENSITIVITY |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS研究方向 | Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/280002 |
专题 | 气候变化 |
作者单位 | 1.RIKEN, Ctr Computat Sci, Kobe, Hyogo, Japan; 2.Chiba Univ, Ctr Ctr Environm Remote Sensing, Chiba, Japan; 3.Japan Sci & Technol Agcy, PRESTO, Chiba, Japan; 4.RIKEN, Interdisciplinary Theoret & Math Sci Program, Kobe, Hyogo, Japan; 5.RIKEN, Cluster Pioneering Res, Kobe, Hyogo, Japan; 6.Hokkaido Univ, Dept Earth & Planetary Sci, Fac Sci, Sapporo, Hokkaido, Japan; 7.Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan; 8.Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA |
推荐引用方式 GB/T 7714 | Kotsuki, Shunji,Sato, Yousuke,Miyoshi, Takemasa. Data Assimilation for Climate Research: Model Parameter Estimation of Large-Scale Condensation Scheme[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2020,125(1). |
APA | Kotsuki, Shunji,Sato, Yousuke,&Miyoshi, Takemasa.(2020).Data Assimilation for Climate Research: Model Parameter Estimation of Large-Scale Condensation Scheme.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,125(1). |
MLA | Kotsuki, Shunji,et al."Data Assimilation for Climate Research: Model Parameter Estimation of Large-Scale Condensation Scheme".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 125.1(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论