GSTDTAP  > 资源环境科学
DOI10.1029/2019WR026085
Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets
Dembele, Moctar1,2; Hrachowitz, Markus2; Savenije, Hubert H. G.2; Mariethoz, Gregoire1; Schaefli, Bettina1,3
2020
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2020
卷号56期号:1
文章类型Article
语种英语
国家Switzerland; Netherlands
英文摘要

Hydrological model calibration combining Earth observations and in situ measurements is a promising solution to overcome the limitations of the traditional streamflow-only calibration. However, combining multiple data sources in model calibration requires a meaningful integration of the data sets, which should harness their most reliable contents to avoid accumulation of their uncertainties and mislead the parameter estimation procedure. This study analyzes the improvement of model parameter selection by using only the spatial patterns of satellite remote sensing data, thereby ignoring their absolute values. Although satellite products are characterized by uncertainties, their most reliable key feature is the representation of spatial patterns, which is a unique and relevant source of information for distributed hydrological models. We propose a novel multivariate calibration framework exploiting spatial patterns and simultaneously incorporating streamflow and three satellite products (i.e., Global Land Evaporation Amsterdam Model [GLEAM] evaporation, European Space Agency Climate Change Initiative [ESA CCI] soil moisture, and Gravity Recovery and Climate Experiment [GRACE] terrestrial water storage). The Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature data set is used for model evaluation. A bias-insensitive and multicomponent spatial pattern matching metric is developed to formulate a multiobjective function. The proposed multivariate calibration framework is tested with the mesoscale Hydrologic Model (mHM) and applied to the poorly gauged Volta River basin located in a predominantly semiarid climate in West Africa. Results of the multivariate calibration show that the decrease in performance for streamflow (-7%) and terrestrial water storage (-6%) is counterbalanced with an increase in performance for soil moisture (+105%) and evaporation (+26%). These results demonstrate that there are benefits in using satellite data sets, when suitably integrated in a robust model parametrization scheme.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000520132500044
WOS关键词REMOTELY-SENSED EVAPOTRANSPIRATION ; SMOS SOIL-MOISTURE ; PARAMETER-ESTIMATION ; LAND-SURFACE ; WATER-RESOURCES ; PROCESS REPRESENTATION ; VEGETATION DYNAMICS ; DATA ASSIMILATION ; EARTH OBSERVATION ; GRACE DATA
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/280463
专题资源环境科学
作者单位1.Univ Lausanne, Inst Earth Surface Dynam, Fac Geosci & Environm, Lausanne, Switzerland;
2.Delft Univ Technol, Fac Civil Engn & Geosci, Water Resources Sect, Delft, Netherlands;
3.Univ Bern, Inst Geog GIUB, Bern, Switzerland
推荐引用方式
GB/T 7714
Dembele, Moctar,Hrachowitz, Markus,Savenije, Hubert H. G.,et al. Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets[J]. WATER RESOURCES RESEARCH,2020,56(1).
APA Dembele, Moctar,Hrachowitz, Markus,Savenije, Hubert H. G.,Mariethoz, Gregoire,&Schaefli, Bettina.(2020).Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets.WATER RESOURCES RESEARCH,56(1).
MLA Dembele, Moctar,et al."Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets".WATER RESOURCES RESEARCH 56.1(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dembele, Moctar]的文章
[Hrachowitz, Markus]的文章
[Savenije, Hubert H. G.]的文章
百度学术
百度学术中相似的文章
[Dembele, Moctar]的文章
[Hrachowitz, Markus]的文章
[Savenije, Hubert H. G.]的文章
必应学术
必应学术中相似的文章
[Dembele, Moctar]的文章
[Hrachowitz, Markus]的文章
[Savenije, Hubert H. G.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。