GSTDTAP  > 资源环境科学
DOI10.1029/2019WR025721
Surrogate-Based Bayesian Inverse Modeling of the Hydrological System: An Adaptive Approach Considering Surrogate Approximation Error
Zhang, Jiangjiang1,2; Zheng, Qiang1,2; Chen, Dingjiang1,3; Wu, Laosheng4; Zeng, Lingzao1,2
2020
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2020
卷号56期号:1
文章类型Article
语种英语
国家Peoples R China; USA
英文摘要

Bayesian inverse modeling is important for a better understanding of hydrological processes. However, this approach can be computationally demanding, as it usually requires a large number of model evaluations. To address this issue, one can take advantage of surrogate modeling techniques. Nevertheless, when approximation error of the surrogate model is neglected, the inversion result will be biased. In this paper, we develop a surrogate-based Bayesian inversion framework that explicitly quantifies and gradually reduces the approximation error of the surrogate. Specifically, two strategies are proposed to quantify the surrogate error. The first strategy works by quantifying the surrogate prediction uncertainty with a Bayesian method, while the second strategy uses another surrogate to simulate and correct the approximation error of the primary surrogate. By adaptively refining the surrogate over the posterior distribution, we can gradually reduce the surrogate approximation error to a small level. Demonstrated with three case studies involving high dimensionality, multimodality, and a real-world application, it is found that both strategies can reduce the bias introduced by surrogate approximation error, while the second strategy that integrates two methods (i.e., polynomial chaos expansion and Gaussian process in this work) that complement each other shows the best performance.


领域资源环境
收录类别SCI-E
WOS记录号WOS:000520132500018
WOS关键词MONTE-CARLO-SIMULATION ; HYDRAULIC CONDUCTIVITY ; UNCERTAINTY ASSESSMENT ; MECHANICAL BEHAVIORS ; MARGINAL LIKELIHOOD ; EXPERIMENTAL-DESIGN ; DATA ASSIMILATION ; WATER-RESOURCES ; EFFICIENT ; OPTIMIZATION
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
被引频次:38[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/280484
专题资源环境科学
作者单位1.Zhejiang Univ, Inst Soil & Water Resources & Environm Sci, Coll Environm & Resource Sci, Hangzhou, Peoples R China;
2.Zhejiang Univ, Zhejiang Prov Key Lab Agr Resources & Environm, Hangzhou, Peoples R China;
3.Zhejiang Univ, Minist Educ, Key Lab Environm Remediat & Ecol Hlth, Hangzhou, Peoples R China;
4.Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA
推荐引用方式
GB/T 7714
Zhang, Jiangjiang,Zheng, Qiang,Chen, Dingjiang,et al. Surrogate-Based Bayesian Inverse Modeling of the Hydrological System: An Adaptive Approach Considering Surrogate Approximation Error[J]. WATER RESOURCES RESEARCH,2020,56(1).
APA Zhang, Jiangjiang,Zheng, Qiang,Chen, Dingjiang,Wu, Laosheng,&Zeng, Lingzao.(2020).Surrogate-Based Bayesian Inverse Modeling of the Hydrological System: An Adaptive Approach Considering Surrogate Approximation Error.WATER RESOURCES RESEARCH,56(1).
MLA Zhang, Jiangjiang,et al."Surrogate-Based Bayesian Inverse Modeling of the Hydrological System: An Adaptive Approach Considering Surrogate Approximation Error".WATER RESOURCES RESEARCH 56.1(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Jiangjiang]的文章
[Zheng, Qiang]的文章
[Chen, Dingjiang]的文章
百度学术
百度学术中相似的文章
[Zhang, Jiangjiang]的文章
[Zheng, Qiang]的文章
[Chen, Dingjiang]的文章
必应学术
必应学术中相似的文章
[Zhang, Jiangjiang]的文章
[Zheng, Qiang]的文章
[Chen, Dingjiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。