GSTDTAP  > 资源环境科学
DOI10.1029/2020WR027627
Improved characterization of DNAPL source zones via sequential hydrogeophysical inversion of hydraulic‐head, self‐potential and partitioning‐tracer data
Xueyuan Kang; Amalia Kokkinaki; Peter K. Kitanidis; Xiaoqing Shi; André; Revil; Jonghyun Lee; Abdellahi Soueid Ahmed; Jichun Wu
2020-07-16
发表期刊Water Resources Research
出版年2020
英文摘要

High‐resolution characterization of hydraulic properties and dense non‐aqueous phase liquid (DNAPL) contaminant source is crucial to develop efficient remediation strategies. However, DNAPL characterization suffers from a limited number of borehole data in the field, resulting in a low‐resolution estimation. Moreover, high‐resolution DNAPL characterization requires a large number of unknowns to be estimated, presenting a computational bottleneck. In this paper, a low‐cost geophysical approach, the self‐potential method, is used as additional information for hydraulic properties characterization. Joint inversion of hydraulic‐head and self‐potential measurements is proposed to improve hydraulic conductivity estimation, which is then used to characterize the DNAPL saturation distribution by inverting partitioning‐tracer measurements. The computational barrier is overcome by: (a) solving the inversion by the principal component geostatistical approach, in which the covariance matrix is replaced by a low‐rank approximation, thus reducing the number of forward model runs; (b) using temporal moments of concentrations instead of individual concentration datapoints for faster forward simulations. To assess the ability of the proposed approach, numerical experiments are conducted in a 3D aquifer with 104 unknown hydraulic conductivities and DNAPL saturations. Results show that with realistic DNAPL sources and a limited number of hydraulic heads, the traditional hydraulic/partitioning tracer tomography roughly reconstructs subsurface heterogeneity but fails to resolve the DNAPL distribution. By adding self‐potential data, the error is reduced by 24% in hydraulic conductivity estimation and 68% in DNAPL saturation characterization. The proposed sequential inversion framework utilizes the complementary information from multi‐source hydrogeophysical datasets, and can provide high‐resolution characterizations for realistic DNAPL sources.

领域资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/284217
专题资源环境科学
推荐引用方式
GB/T 7714
Xueyuan Kang,Amalia Kokkinaki,Peter K. Kitanidis,等. Improved characterization of DNAPL source zones via sequential hydrogeophysical inversion of hydraulic‐head, self‐potential and partitioning‐tracer data[J]. Water Resources Research,2020.
APA Xueyuan Kang.,Amalia Kokkinaki.,Peter K. Kitanidis.,Xiaoqing Shi.,André.,...&Jichun Wu.(2020).Improved characterization of DNAPL source zones via sequential hydrogeophysical inversion of hydraulic‐head, self‐potential and partitioning‐tracer data.Water Resources Research.
MLA Xueyuan Kang,et al."Improved characterization of DNAPL source zones via sequential hydrogeophysical inversion of hydraulic‐head, self‐potential and partitioning‐tracer data".Water Resources Research (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xueyuan Kang]的文章
[Amalia Kokkinaki]的文章
[Peter K. Kitanidis]的文章
百度学术
百度学术中相似的文章
[Xueyuan Kang]的文章
[Amalia Kokkinaki]的文章
[Peter K. Kitanidis]的文章
必应学术
必应学术中相似的文章
[Xueyuan Kang]的文章
[Amalia Kokkinaki]的文章
[Peter K. Kitanidis]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。