GSTDTAP  > 气候变化
DOI10.1029/2020JD032631
Improved Himawari-8/AHI Radiance Data Assimilation With a Double Cloud Detection Scheme
Li, Xin1,2,3; Zou, Xiaolei4; Zhuge, Xiaoyong5,6; Zeng, Mingjian1,2,3; Wang, Ning7; Tang, Fei1,2,3
2020-07-16
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2020
卷号125期号:13
文章类型Article
语种英语
国家Peoples R China
英文摘要

This study explores the possibility of improving the impact of the Advanced Himawari Imager (AHI) clear-sky radiance data assimilation (DA), focusing on cloud detection. First, the performance of the "clear-channel" detection scheme of the minimum residual (MR) method embedded in the Gridpoint Statistical Interpolation (GSI) DA system is compared with the performances of the CLouds from Advanced Very High Resolution Radiometer Extended (CLAVR-x) cloud processing system and the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-product-generating algorithm. The MR scheme does not reliably identify optically thin clouds along cloud edges. The MR-estimated cloud-top pressures are often too high for upper-level clouds, rendering some cloud-contaminated channels falsely clear. An infrared-only AHI cloud mask (ACM) algorithm is added to the MR scheme to perform a so-called double cloud detection (DCD). The DCD scheme adds nine ACM tests for selecting clear pixels and two thin cloud tests for rejecting pixels affected by upper-level clouds. For a 1-month period, we show the positive impacts of assimilating AHI infrared channels on short-term forecasts of temperature and humidity using the DCD scheme rather than the MR scheme. Improvements in the DCD experiment extend more vertically, horizontally, and temporally than those in the MR experiment during the 48-hr forecasting time. In terms of daily variations in forecasting performance, the DCD experiment consistently improves while the MR experiment fluctuates between improvement and degradation. Such improvements come from an elimination of those data having negative observation-minus-background values of large magnitudes due to cloud contamination, which causes positive biases in humidity analyses.


英文关键词data assimilation satellite infrared imager cloud detection
领域气候变化
收录类别SCI-E
WOS记录号WOS:000551484700005
WOS关键词MINIMUM RESIDUAL METHOD ; SATELLITE SOUNDER DATA ; INFRARED RADIANCES ; BIAS CORRECTION ; PART I ; PREDICTION ; ALGORITHM ; MODEL ; WATER ; SIMULATION
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/289517
专题气候变化
作者单位1.CMA, Key Lab Transportat Meteorol, Nanjing, Peoples R China;
2.Jiangsu Res Inst Meteorol Sci, Nanjing, Peoples R China;
3.Nanjing Joint Inst Atmospher Sci, Nanjing, Peoples R China;
4.Nanjing Univ Informat Sci & Technol, Joint Ctr Data Assimilat Res & Applicat, Nanjing, Peoples R China;
5.Nanjing Univ, Minist Educ, Sch Atmospher Sci, Nanjing, Peoples R China;
6.Nanjing Univ, Minist Educ, Key Lab Mesoscale Severe Weather, Nanjing, Peoples R China;
7.Jiangsu Climate Ctr, Nanjing, Peoples R China
推荐引用方式
GB/T 7714
Li, Xin,Zou, Xiaolei,Zhuge, Xiaoyong,et al. Improved Himawari-8/AHI Radiance Data Assimilation With a Double Cloud Detection Scheme[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2020,125(13).
APA Li, Xin,Zou, Xiaolei,Zhuge, Xiaoyong,Zeng, Mingjian,Wang, Ning,&Tang, Fei.(2020).Improved Himawari-8/AHI Radiance Data Assimilation With a Double Cloud Detection Scheme.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,125(13).
MLA Li, Xin,et al."Improved Himawari-8/AHI Radiance Data Assimilation With a Double Cloud Detection Scheme".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 125.13(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Xin]的文章
[Zou, Xiaolei]的文章
[Zhuge, Xiaoyong]的文章
百度学术
百度学术中相似的文章
[Li, Xin]的文章
[Zou, Xiaolei]的文章
[Zhuge, Xiaoyong]的文章
必应学术
必应学术中相似的文章
[Li, Xin]的文章
[Zou, Xiaolei]的文章
[Zhuge, Xiaoyong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。