GSTDTAP  > 地球科学
DOI10.1175/JAS-D-18-0107.1
Impact of Aerosol Shortwave Radiative Heating on Entrainment in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study
Liu, Cheng1,5; Fedorovich, Evgeni2; Huang, Jianping1; Hu, Xiao-Ming2,3; Wang, Yongwei1; Lee, Xuhui1,4
2019-03-01
发表期刊JOURNAL OF THE ATMOSPHERIC SCIENCES
ISSN0022-4928
EISSN1520-0469
出版年2019
卷号76期号:3页码:785-799
文章类型Article
语种英语
国家Peoples R China; USA
英文摘要

Entrainment is critical to the development of the atmospheric convective boundary layer (CBL), but little is known about how entrainment is impacted by the aerosol radiative effect. An aerosol radiation transfer model is used in conjunction with large-eddy simulation (LES) to quantify the impact of aerosol shortwave radiative heating on entrainment and thermodynamics of an idealized dry CBL under aerosol-loading conditions. An entrainment equation is derived within the framework of a zero-order model (ZOM) with the aerosol radiative heating effect included; the equation is then examined against the LES outputs for varying aerosol optical depths (AODs) and free-atmosphere stratification scenarios. The results show that the heat flux profiles become more nonlinear in shape as compared to the case of the clean (no aerosol pollution) CBL, with the degree of nonlinearity being highly dependent on the AOD of the layer for the given type of radiation-absorbing aerosols. As AOD increases, less solar radiation reaches the surface and thus the surface heat flux becomes smaller, and both actual (LES) and ZOM-derived entrainment flux ratios decrease. This trend is opposite to the clean CBL where the LES-predicted flux ratios show an increasing trend with diminishing surface heat flux, while the ZOM-calculated flux ratio remains constant. The modified dimensionless entrainment rate closely follows the -1 power law with a modified Richardson number. The study suggests that including the aerosol radiative effect may improve numerical air quality predictions for heavy-air-pollution events.


英文关键词Entrainment Large eddy simulations Aerosol radiative effect
领域地球科学
收录类别SCI-E
WOS记录号WOS:000460745700001
WOS关键词SHEAR-FREE ; MIXED LAYERS ; BLACK CARBON ; WATER-VAPOR ; BULK MODELS ; ORDER-JUMP ; PART II ; PARAMETERIZATION ; POLLUTION ; ZONE
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
被引频次:18[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/29597
专题地球科学
作者单位1.Nanjing Univ Informat Sci & Technol, Yale Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Int Joint Lab Climate & Environm Change,Ctr Atmos, Nanjing, Jiangsu, Peoples R China;
2.Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA;
3.Univ Oklahoma, Ctr Anal & Predict Storms, Norman, OK 73019 USA;
4.Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA;
5.East China Univ Technol, Sch Water Resources & Environm Engn, Jiangxi Prov Key Lab Causes & Control Atmospher P, Nanchang, Jiangxi, Peoples R China
推荐引用方式
GB/T 7714
Liu, Cheng,Fedorovich, Evgeni,Huang, Jianping,et al. Impact of Aerosol Shortwave Radiative Heating on Entrainment in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study[J]. JOURNAL OF THE ATMOSPHERIC SCIENCES,2019,76(3):785-799.
APA Liu, Cheng,Fedorovich, Evgeni,Huang, Jianping,Hu, Xiao-Ming,Wang, Yongwei,&Lee, Xuhui.(2019).Impact of Aerosol Shortwave Radiative Heating on Entrainment in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study.JOURNAL OF THE ATMOSPHERIC SCIENCES,76(3),785-799.
MLA Liu, Cheng,et al."Impact of Aerosol Shortwave Radiative Heating on Entrainment in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study".JOURNAL OF THE ATMOSPHERIC SCIENCES 76.3(2019):785-799.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Cheng]的文章
[Fedorovich, Evgeni]的文章
[Huang, Jianping]的文章
百度学术
百度学术中相似的文章
[Liu, Cheng]的文章
[Fedorovich, Evgeni]的文章
[Huang, Jianping]的文章
必应学术
必应学术中相似的文章
[Liu, Cheng]的文章
[Fedorovich, Evgeni]的文章
[Huang, Jianping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。