GSTDTAP  > 资源环境科学
DOI10.1029/2020WR027949
Constraining Remote River Discharge Estimation Using Reach‐Scale Geomorphology
C. B. Brinkerhoff; C. J. Gleason; D. Feng; P. Lin
2020-10-24
发表期刊Water Resources Research
出版年2020
英文摘要

Recent advances in remote sensing and the upcoming launch of the joint NASA/CNES/CSA/UKSA Surface Water and Ocean Topography (SWOT) satellite point towards improved river discharge estimates in ungauged basins. Existing discharge methods rely on ‘prior river knowledge’ to infer parameters not directly measured from space. Here, we show that discharge estimation is improved by classifying and parameterizing rivers based on their unique geomorphology and hydraulics. Using over 370,000 in situ hydraulic observations as training data, we test unsupervised learning and an ‘expert’ method to assign these hydraulics and geomorphology to rivers via remote sensing. This intervention, along with updates to model physics, constitutes a new method we term ‘geoBAM,’ an update of the Bayesian At‐many‐stations hydraulic geometry‐Manning's (BAM) algorithm. We tested geoBAM on Landsat imagery over more than 7,500 rivers (108 are gauged) in Canada's Mackenzie River basin and on simulated hydraulic data for 19 rivers that mimic SWOT observations without measurement error. geoBAM yielded considerable improvement over BAM, improving the median Nash‐Sutcliffe Efficiency (NSE) for the Mackenzie River from ‐0.05 to 0.26 and from 0.16 to 0.46 for the SWOT rivers. Further, NSE improved by at least 0.10 in 78/108 gauged Mackenzie rivers and 8/19 SWOT rivers. We attribute geoBAM improvement to parameterizing rivers by type rather than globally, but prediction accuracy worsens if parameters are misassigned. This method is easily mapped to rivers at the global scale, and paves the way for improving future discharge estimates, especially when coupled with hydrologic models.

领域资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/300198
专题资源环境科学
推荐引用方式
GB/T 7714
C. B. Brinkerhoff,C. J. Gleason,D. Feng,等. Constraining Remote River Discharge Estimation Using Reach‐Scale Geomorphology[J]. Water Resources Research,2020.
APA C. B. Brinkerhoff,C. J. Gleason,D. Feng,&P. Lin.(2020).Constraining Remote River Discharge Estimation Using Reach‐Scale Geomorphology.Water Resources Research.
MLA C. B. Brinkerhoff,et al."Constraining Remote River Discharge Estimation Using Reach‐Scale Geomorphology".Water Resources Research (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[C. B. Brinkerhoff]的文章
[C. J. Gleason]的文章
[D. Feng]的文章
百度学术
百度学术中相似的文章
[C. B. Brinkerhoff]的文章
[C. J. Gleason]的文章
[D. Feng]的文章
必应学术
必应学术中相似的文章
[C. B. Brinkerhoff]的文章
[C. J. Gleason]的文章
[D. Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。