GSTDTAP  > 气候变化
DOI10.1126/science.abe4813
Build international biorepository capacity
Jocelyn P. Colella; Bernard Risky Agwanda; Faisal Ali Anwarali Khan; John Bates; Carlos A. Carrión Bonilla; Noé U. de la Sancha; Jonathan L. Dunnum; Adam W. Ferguson; Stephen E. Greiman; Prince Kaleme Kiswele; Enrique P. Lessa; Pamela Soltis; Cody W. Thompson; Maarten P. M. Vanhove; Paul W. Webala; Marcelo Weksler; Joseph A. Cook
2020-11-13
发表期刊Science
出版年2020
英文摘要In their Perspective “Rigorous wildlife disease surveillance” (10 July, p. 145), M. Watsa et al. underscore the value of One Health approaches to stimulate integration across currently siloed efforts in zoonotic research and mitigation. To achieve comprehensive decentralized pathogen surveillance, there is an urgent need to develop environmental and biodiversity infrastructure in biodiverse countries experiencing high rates of habitat conversion, wildlife trafficking, and human-wildlife interactions. Approximately one-third of One Health networks lack an environmental component, fewer than half are active in wildlife surveillance, and almost none is led by developing countries ([ 1 ][1]). International support for development of natural history museums with frozen vertebrate tissue collections remains a key component missing from the One Health equation. Most pathogens causing severe outbreaks in humans are zoonotic in origin ([ 2 ][2]); thus, understanding their evolution and that of their wild animal hosts is imperative. As was the case for coronavirus disease 2019 (COVID-19) ([ 3 ][3]), identifying wild animal reservoirs can be challenging when biorepositories are lacking ([ 4 ][4]). In most countries, natural history biorepositories remain poorly supported and largely disconnected from public health initiatives. For example, most studies of bat coronaviruses to date ([ 5 ][5]), including the PREDICT animal surveys discussed in Watsa et al. , did not preserve host specimens or tissues, thus limiting the potential for molecular host identification or replication and extension of the science ([ 6 ][6]). Emerging infectious disease response hinges on sampling depth across space, time, and taxonomy, the very sampling enabled by museum biorepositories. As primary biological infrastructure, in-country development of museum collections that follow best practices ([ 7 ][7]), with specimen data freely available through the internet, should be an international imperative ([ 8 ][8]) for effective global surveillance and mitigation of emerging infectious diseases. 1. [↵][9]1. M. S. Khan et al ., Lancet Planet. Health 2, e264 (2018). [OpenUrl][10] 2. [↵][11]1. K. E. Jones et al ., Nature 451, 990 (2008). [OpenUrl][12][CrossRef][13][PubMed][14][Web of Science][15] 3. [↵][16]1. J. Cohen , Science 10.1126/science.abd7707 (2020). 4. [↵][17]1. S. A. J. Leendertz, 2. J. F. Gogarten, 3. A. Düx, 4. S. Calvignac-Spencer, 5. F. H. Leendertz , . EcoHealth 13, 18 (2016). [OpenUrl][18][CrossRef][19] 5. [↵][20]1. B. Hu et al ., PLoS Path. 13, e1006698 (2017). [OpenUrl][21] 6. [↵][22]1. J. A. Cook et al ., Bioscience 70, 531 (2020). [OpenUrl][23] 7. [↵][24]1. J. L. Dunnum et al ., PLoS Negl. Trop. Dis. 11, 1 (2017). [OpenUrl][25][CrossRef][26] 8. [↵][27]1. O. Paknia, 2. H. Sh Rajaei, 3. A. Koch , Organ. Divers. Evol. 15, 619 (2015). [OpenUrl][28] [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #xref-ref-1-1 "View reference 1 in text" [10]: {openurl}?query=rft.jtitle%253DLancet%2BPlanet.%2BHealth%26rft.volume%253D2%26rft.spage%253De264%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [11]: #xref-ref-2-1 "View reference 2 in text" [12]: {openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.aulast%253DJones%26rft.auinit1%253DK.%2BE.%26rft.volume%253D451%26rft.issue%253D7181%26rft.spage%253D990%26rft.epage%253D993%26rft.atitle%253DGlobal%2Btrends%2Bin%2Bemerging%2Binfectious%2Bdiseases.%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature06536%26rft_id%253Dinfo%253Apmid%252F18288193%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [13]: /lookup/external-ref?access_num=10.1038/nature06536&link_type=DOI [14]: /lookup/external-ref?access_num=18288193&link_type=MED&atom=%2Fsci%2F370%2F6518%2F773.2.atom [15]: /lookup/external-ref?access_num=000253313100048&link_type=ISI [16]: #xref-ref-3-1 "View reference 3 in text" [17]: #xref-ref-4-1 "View reference 4 in text" [18]: {openurl}?query=rft.jtitle%253DEcoHealth%26rft.volume%253D13%26rft.spage%253D18%26rft_id%253Dinfo%253Adoi%252F10.1007%252Fs10393-015-1053-0%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [19]: /lookup/external-ref?access_num=10.1007/s10393-015-1053-0&link_type=DOI [20]: #xref-ref-5-1 "View reference 5 in text" [21]: {openurl}?query=rft.jtitle%253DPLoS%2BPath.%26rft.volume%253D13%26rft.spage%253D1006698e%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [22]: #xref-ref-6-1 "View reference 6 in text" [23]: {openurl}?query=rft.jtitle%253DBioscience%26rft.volume%253D70%26rft.spage%253D531%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: #xref-ref-7-1 "View reference 7 in text" [25]: {openurl}?query=rft.jtitle%253DPLoS%2BNegl.%2BTrop.%2BDis.%26rft.volume%253D11%26rft.spage%253D1%26rft_id%253Dinfo%253Adoi%252F10.1371%252Fjournal.pntd.0005785%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: /lookup/external-ref?access_num=10.1371/journal.pntd.0005785&link_type=DOI [27]: #xref-ref-8-1 "View reference 8 in text" [28]: {openurl}?query=rft.jtitle%253DOrgan.%2BDivers.%2BEvol.%26rft.volume%253D15%26rft.spage%253D619%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/304108
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Jocelyn P. Colella,Bernard Risky Agwanda,Faisal Ali Anwarali Khan,et al. Build international biorepository capacity[J]. Science,2020.
APA Jocelyn P. Colella.,Bernard Risky Agwanda.,Faisal Ali Anwarali Khan.,John Bates.,Carlos A. Carrión Bonilla.,...&Joseph A. Cook.(2020).Build international biorepository capacity.Science.
MLA Jocelyn P. Colella,et al."Build international biorepository capacity".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jocelyn P. Colella]的文章
[Bernard Risky Agwanda]的文章
[Faisal Ali Anwarali Khan]的文章
百度学术
百度学术中相似的文章
[Jocelyn P. Colella]的文章
[Bernard Risky Agwanda]的文章
[Faisal Ali Anwarali Khan]的文章
必应学术
必应学术中相似的文章
[Jocelyn P. Colella]的文章
[Bernard Risky Agwanda]的文章
[Faisal Ali Anwarali Khan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。