GSTDTAP  > 气候变化
DOI10.1029/2018JD029163
A Versatile Method for Ice Particle Habit Classification Using Airborne Imaging Probe Data
Praz, C.1; Ding, S.2; McFarquhar, G. M.2,3; Berne, A.1
2018-12-16
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2018
卷号123期号:23页码:13472-13495
文章类型Article
语种英语
国家Switzerland; USA
英文摘要

A versatile method to automatically classify ice particle habit from various airborne optical array probes is presented. The classification is achieved using a multinomial logistic regression model. For each airborne probe, the model determines the particle habit (among six classes) based on a large set of geometrical and textural descriptors extracted from the two-dimensional image of a particle. The technique is applied and evaluated using three probes with significantly different specifications: the high volume precipitation spectrometer, the two-dimensional stereo probe, and the cloud particle imager. Performance and robustness of the method are assessed using standard machine learning tools on the basis of thousands of images manually labeled for each of the considered probes. The three classifiers show good performance characterized by overall accuracies and Heidke skill scores above 90%. Depending on the application and user preferences, the classification scheme can be easily adapted. For a more precise output, intraclass subclassification can be achieved in a nested fashion, illustrated here with columnar crystals and aggregates. A comparative study of the classification output obtained with the three probes is presented for two aircraft flight periods selected when the three probes were operating together. Results are globally consistent in term of proportions of habit identified (once blurry and partial images have been automatically discarded). A perfect agreement is not expected as the three considered probes are sensitive to different particle size range.


Plain Language Summary An automatic classification method to identify ice particle habit from images is proposed. The technique is applied and evaluated using three airborne probes mounted on research aircraft with significantly different specifications: the high volume precipitation spectrometer, the two-dimensional stereo probe, and the cloud particle imager. The method relies on thousand of images manually classified and advanced machine learning techniques to determine the snow crystal habit among six preset classes. High classification performance is achieved, with accuracies above 90% for each of the considered probes.


英文关键词ice crystal habit classification optical array probe machine learning logistic regression cloud microphysics
领域气候变化
收录类别SCI-E
WOS记录号WOS:000455285500025
WOS关键词SINGLE-SCATTERING PROPERTIES ; HYDROMETEOR CLASSIFICATION ; OPTICAL-PROPERTIES ; ASPECT RATIOS ; CLOUD ; RADAR ; SNOWFLAKE ; CRYSTALS ; SPEED ; SHAPE
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/33017
专题气候变化
作者单位1.Ecole Polytech Fed Lausanne, Environm Remote Sensing Lab LTE, Lausanne, Switzerland;
2.Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA;
3.Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA
推荐引用方式
GB/T 7714
Praz, C.,Ding, S.,McFarquhar, G. M.,et al. A Versatile Method for Ice Particle Habit Classification Using Airborne Imaging Probe Data[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2018,123(23):13472-13495.
APA Praz, C.,Ding, S.,McFarquhar, G. M.,&Berne, A..(2018).A Versatile Method for Ice Particle Habit Classification Using Airborne Imaging Probe Data.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,123(23),13472-13495.
MLA Praz, C.,et al."A Versatile Method for Ice Particle Habit Classification Using Airborne Imaging Probe Data".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 123.23(2018):13472-13495.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Praz, C.]的文章
[Ding, S.]的文章
[McFarquhar, G. M.]的文章
百度学术
百度学术中相似的文章
[Praz, C.]的文章
[Ding, S.]的文章
[McFarquhar, G. M.]的文章
必应学术
必应学术中相似的文章
[Praz, C.]的文章
[Ding, S.]的文章
[McFarquhar, G. M.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。