Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1002/2017JD027113 |
Development of Algorithm for Discriminating Hydrometeor Particle Types With a Synergistic Use of CloudSat and CALIPSO | |
Kikuchi, M.1; Okamoto, H.2; Sato, K.2; Suzuki, K.3; Cesana, G.4,5; Hagihara, Y.1; Takahashi, N.6; Hayasaka, T.7; Oki, R.1 | |
2017-10-27 | |
发表期刊 | JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
![]() |
ISSN | 2169-897X |
EISSN | 2169-8996 |
出版年 | 2017 |
卷号 | 122期号:20 |
文章类型 | Article |
语种 | 英语 |
国家 | Japan; USA |
英文摘要 | We developed a method for classifying hydrometeor particle types, including cloud and precipitation phase and ice crystal habit, by a synergistic use of CloudSat/Cloud Profiling Radar (CPR) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)/Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). We investigated how the cloud phase and ice crystal habit characterized by CALIOP globally relate with radar reflectivity and temperature. The global relationship thus identified was employed to develop an algorithm for hydrometeor type classification with CPR alone. The CPR-based type classification was then combined with CALIPSO-based type characterization to give CPR-CALIOP synergy classification. A unique aspect of this algorithm is to exploit and combine the lidar's sensitivity to thin ice clouds and the radar's ability to penetrate light precipitation to offer more complete picture of vertically resolved hydrometeor type classification than has been provided by previous studies. Given the complementary nature of radar and lidar detections of hydrometeors, our algorithm delivers 13 hydrometeor types: warm water, supercooled water, randomly oriented ice crystal (3D-ice), horizontally oriented plate (2D-plate), 3D-ice + 2D-plate, liquid drizzle, mixed-phase drizzle, rain, snow, mixed-phase cloud, water + liquid drizzle, water + rain, and unknown. The global statistics of three-dimensional occurrence frequency of each hydrometeor type revealed that 3D-ice contributes the most to the total cloud occurrence frequency (53.8%), followed by supercooled water (14.3%), 2D-plate (9.2%), rain (5.9%), warm water (5.7%), snow (4.8%), mixed-phase drizzle (2.3%), and the remaining types (4.0%). This hydrometeor type classification provides observation-based insight for climate model diagnostics in representation of cloud phase and their microphysical characteristics. |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000417195200026 |
WOS关键词 | SURFACE REFERENCE TECHNIQUE ; TRMM PRECIPITATION RADAR ; MIXED-PHASE ; WATER-CONTENT ; CLIMATE ; SCHEME ; MODEL ; MODIS ; PARAMETERIZATION ; SENSITIVITY |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS研究方向 | Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/33309 |
专题 | 气候变化 |
作者单位 | 1.Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Ibaraki, Japan; 2.Kyushu Univ, Res Inst Appl Mech, Fukuoka, Japan; 3.Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan; 4.CALTECH, Jet Prop Lab, Pasadena, CA USA; 5.Columbia Univ, Goddard Inst Space Studies, New York, NY USA; 6.Nagoya Univ, Hydrospher Atmospher Res Ctr, Nagoya, Aichi, Japan; 7.Tohoku Univ, Ctr Atmospher & Ocean Studies, Sendai, Miyagi, Japan |
推荐引用方式 GB/T 7714 | Kikuchi, M.,Okamoto, H.,Sato, K.,et al. Development of Algorithm for Discriminating Hydrometeor Particle Types With a Synergistic Use of CloudSat and CALIPSO[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2017,122(20). |
APA | Kikuchi, M..,Okamoto, H..,Sato, K..,Suzuki, K..,Cesana, G..,...&Oki, R..(2017).Development of Algorithm for Discriminating Hydrometeor Particle Types With a Synergistic Use of CloudSat and CALIPSO.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,122(20). |
MLA | Kikuchi, M.,et al."Development of Algorithm for Discriminating Hydrometeor Particle Types With a Synergistic Use of CloudSat and CALIPSO".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 122.20(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论