GSTDTAP  > 气候变化
DOI10.1029/2018JD028415
Application of an LAI Inversion Algorithm Based on the Unified Model of Canopy Bidirectional Reflectance Distribution Function to the Heihe River Basin
Ma, Bo1,2; Li, Jucai1,2; Fan, Wenjie1,2; Ren, Huazhong1,2; Xu, Xiru1,2; Cui, Yaokui1,2; Peng, Jingjing3
2018-09-27
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2018
卷号123期号:18页码:10671-10687
文章类型Article
语种英语
国家Peoples R China; USA
英文摘要

The leaf area index (LAI) is one of the most important parameters of vegetation canopy structure, which can represent the growth conditions of vegetation effectively. The accuracy, availability, and timeliness of LAI data can be improved greatly, which is of great importance to vegetation-related research. There are various types of vegetation and terrain conditions in the Heihe River Basin, the second largest inland river basin in northwest China. It is not only helpful to evaluate the accuracy of LAI retrieval algorithms for the complex land surface but also useful to understand the fragile ecological status of the Heihe River Basin. In contrast to previous LAI inversion models, the bidirectional reflectance distribution function unified model can be applied for both continuous and discrete vegetation, and it is appropriate for analyzing heterogeneous vegetation distributions. In this work, we produced 30-m LAI products once a month in the growing season of 2012. Results show that the algorithm can effectively retrieve LAIs. We verified the LAI product using field measurement data. The mean absolute errors in forest, farmland, and sparse grassland are 0.44, 0.56, and 0.38 respectively, and the R-2 is 0.8736. Further analysis shows that main errors come from three parts: errors in the parameters, mistakes in the vegetation classification, and interval of the look-up table. Mixed pixel is also a problem for this model. Despite this, high resolution and applicability means this algorithm can be a good approach for LAI retrieval.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000447807300036
WOS关键词LEAF-AREA-INDEX ; GLOBAL SENSITIVITY-ANALYSIS ; RADIATIVE-TRANSFER MODEL ; HIGH-RESOLUTION IMAGERY ; VEGETATION CANOPY ; SATELLITE IMAGERY ; SIMPLE RATIO ; PART 1 ; RETRIEVAL ; VARIABLES
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/33532
专题气候变化
作者单位1.Peking Univ, Inst RS & GIS, Beijing, Peoples R China;
2.Peking Univ, Beijing Key Lab Spatial Informat Integrat & Its A, Beijing, Peoples R China;
3.Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
推荐引用方式
GB/T 7714
Ma, Bo,Li, Jucai,Fan, Wenjie,et al. Application of an LAI Inversion Algorithm Based on the Unified Model of Canopy Bidirectional Reflectance Distribution Function to the Heihe River Basin[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2018,123(18):10671-10687.
APA Ma, Bo.,Li, Jucai.,Fan, Wenjie.,Ren, Huazhong.,Xu, Xiru.,...&Peng, Jingjing.(2018).Application of an LAI Inversion Algorithm Based on the Unified Model of Canopy Bidirectional Reflectance Distribution Function to the Heihe River Basin.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,123(18),10671-10687.
MLA Ma, Bo,et al."Application of an LAI Inversion Algorithm Based on the Unified Model of Canopy Bidirectional Reflectance Distribution Function to the Heihe River Basin".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 123.18(2018):10671-10687.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ma, Bo]的文章
[Li, Jucai]的文章
[Fan, Wenjie]的文章
百度学术
百度学术中相似的文章
[Ma, Bo]的文章
[Li, Jucai]的文章
[Fan, Wenjie]的文章
必应学术
必应学术中相似的文章
[Ma, Bo]的文章
[Li, Jucai]的文章
[Fan, Wenjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。